Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The figure gives the potential energy functionU(r) of a projectile, plotted outward from the surface of a planet of radius. What least kinetic energy is required of a projectile launched at the surface if the projectile is to “escape” the planet

Short Answer

Expert verified

Minimum kinetic energy required to escape from the surface of planet is 5×109J

Step by step solution

01

The given data

Potential energy at Rsis 5×109 J

02

Understanding the concept of energy in a gravitational field

The total energy of a particle is the sum of the kinetic and potential energies of the particle. To escape from the gravitational field, the supplied kinetic energy should be equal to the gravitational potential energy of the particle.

Formula:

Total energy= Kinetic Energy+ Potential Energy

TE = U + KE

03

Calculation of the least kinetic energy

Minimum kinetic energy required to escape from the surface of the planet

To escape from the surface of earth TE = 0

It means

KE+U=0KE=-U

But, from the graph, the potential energy on surface of earth is U=-5×109J

So, the least kinetic energy of the particle is 5×109J

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three identical stars of massMform an equilateral triangle that rotates around the triangle’s center as the stars move in a common circle about that center. The triangle has edge lengthL. What is the speed of the stars?

A massMis split into two parts,mand role="math" localid="1657189921712" M-m, which are0 then separated by a certain distance. What ratiom-Mmaximizes the magnitude of the gravitational force between the parts?

The mean distance of Mars from the Sun is1.52times that of Earth from the Sun. From Kepler’s law of periods, calculate the number of years required for Mars to make one revolution around the Sun; compare your answer with the value given in Appendix C.

The Sun, which is2.2×1020mfrom the center of the Milky Way galaxy, revolves around that center once every 2.5×108years. Assuming each star in the Galaxy has a mass equal to the Sun’s mass of 2.0×1030kg, the stars are distributed uniformly in a sphere about the galactic center, and the Sun is at the edge of that sphere, estimate the number of stars in the Galaxy.

z Assume a planet is a uniform sphere of radiusRthat (somehow) has a narrow radial tunnel through its center. Also assume we can position an apple any where a long the tunnel or outside the sphere. LetFRbe the magnitude of the gravitational force on the apple when it is located at the planet’s surface. How far from the surface is there a point where the magnitude isrole="math" localid="1657195577959" FRif we move the apple (a) away from the planet and (b) into the tunnel?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free