Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 23-45, a small circular hole of radiusR=1.80cmhas been cut in the middle of an infinite, flat, non-conducting surface that has uniform charge densityσ=4.50pC/m2. A z-axis, with its origin at the hole’s center, is perpendicular to the surface. In unit-vector notation, what is the electric field at point Patz=2.56cm? (Hint:See Eq. 22-26 and use superposition.)

Short Answer

Expert verified

The electric field at point P at z=2.56 cm is0.208N/Ck .

Step by step solution

01

The given data

a) The radius of the small circular hole, R =1.80 cm

b) Surface charge density,σ=4.50pC/m2

c) Distance of the point,z =2.56 cm

02

Understanding the concept of the electric field

Using the concept of Gauss law-planar symmetry of the electric field of a non-conducting sheet, we can get the required value of the net electric field by substituting the electric field for sheet and pad as calculated.

Formula:

The electric field of a non-conducting sheet, E=σ2ε0 (1)

03

Calculation of the electric field

The charge distribution in this problem is equivalent to that of an infinite sheet of charge with surface charge density σ=4.50pC/m2. Again, a small circular pad of radiusR=1.80 cm located at the middle of the sheet with charge density-σ. The electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. Using forE2, the net electric field Eat a distance z=2.56 cm along the central axis is then given using equation (1) as given:

E=E1+E2=σ2ε0k+-σ2ε01-zz2+R2k=σz2ε0z2+R2k=4.50×10-12C/m22.56×10-2m28.85×10-12C2/N.m22.56×10-2m2+1.80×10-2m2=0.208N/Ck

Hence, the value of the electric field is 0.208N/Ck.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 23-51 shows a cross-section through a very large non-conducting slab of thicknessd=9.40mmand uniform volume charge density p=5.80fC/m3 . The origin of an x-axis is at the slab’s center. What is the magnitude of the slab’s electric field at an xcoordinate of (a) 0 , (b) 2.0mm , (c) 4.70mm , and (d) 26.0mm?

A non-conducting solid sphere has a uniform volume charge density P. Letrbe the vector from the center of the sphere to a general point Pwithin the sphere.

(a) Show that the electric field at Pis given byE=ρr/3ε0(Note that the result is independent of the radius of the sphere.)

(b) A spherical cavity is hollowed out of the sphere, as shown in Fig. 23- 60. Using superposition concepts, show that the electric field at all points within the cavity is uniform and equal to E=ρr/3ε0where ais the position vector from the center of the sphere to the center of the cavity.

The chocolate crumb mystery. Explosions ignited by electrostatic discharges (sparks) constitute a serious danger in facilities handling grain or powder. Such an explosion occurred in chocolate crumb powder at a biscuit factory in the 1970 s. Workers usually emptied newly delivered sacks of the powder into a loading bin, from which it was blown through electrically grounded plastic pipes to a silo for storage. Somewhere along this route, two conditions for an explosion were met: (1) The magnitude of an electric field became3.0×106N/Cor greater, so that electrical breakdown and thus sparking could occur. (2) The energy of a spark was150mJor greater so that it could ignite the powder explosively. Let us check for the first condition in the powder flow through the plastic pipes. Suppose a stream of negatively charged powder was blown through a cylindrical pipe of radiusR=5.0cm. Assume that the powder and its charge were spread uniformly through the pipe with a volume charge density r.

(a) Using Gauss’ law, find an expression for the magnitude of the electric fieldin the pipe as a function of radial distance r from the pipe center.

(b) Does E increase or decrease with increasing r?

(c) IsEdirected radially inward or outward?

(d) Forρ=1.1×103C/m3(a typical value at the factory), find the maximum E and determine where that maximum field occurs.

(e) Could sparking occur, and if so, where? (The story continues with Problem 70 in Chapter 24.)

Three infinite non-conducting sheets, with uniform positive surface charge densitiesσ,2σ,and 3σ,are arranged to be parallel like the two sheets in Fig. 23-19a. What is their order, from left to right, if the electric field produced by the arrangement has magnitudeE=0in one region andE=2σ/ε0in another region?

In Fig. 23-56, a non conducting spherical shell of inner radius a=2.00cm and outer radius b=2.40cm has (within its thickness) a positive volume charge density r=A/r , where Ais a constant and ris the distance from the center of the shell. In addition, a small ball of charge q=45.0fC is located at that center. What is value should Ahave if the electric field in the shell ( arb) is to be uniform?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free