Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Anblock of steel is at rest on a horizontal table. The coefficient of static friction between block and table is 0.52. (a) What is the magnitude of the horizontal force that will put the block on the verge of moving? (b) What is the magnitude of a force acting upward60°from the horizontal that will put the block on the verge of moving? (c) If the force acts downward at60°from the horizontal, how large can its magnitude be without causing the block to move?

Short Answer

Expert verified

(a) fs,max=56N

(b) F = 59 N

(c)F=1.1×103N

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

M =11 kg

The coefficient of static friction between block and table isμs=0.52

Angle that force acting from the horizontalθ=37°

02

Understanding the concept

Frictional force is given by the product of coefficient of friction and the normal reaction. Newton’s 2nd law states that the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the object’s mass. Using these concepts, the problem can be solved.

03

Calculate the magnitude of the horizontal force that will put the block on the verge of moving

(a)

We know FN=mg

fs,max=μsmg=0.5211kg9.8m/s2=56N

Consequently, the horizontal force F needed to initiate motion must be slightly more than 56 N

04

Calculate the magnitude of a force acting upward  from the horizontal that will put the block on the verge of moving 

(b)

Analyzing vertical forces when F is at nonzero yields

FN+Fsinθ=mg;fs,max=μsmg-Fsinθ

The horizontal component of F needed to initiate motion must be slightly more than this, so

Fcosθ=μsmg-FsinθF=μsmgcosθ+μssinθ

which yields F = 59 N when θ = 60°

05

Find out how large can its magnitude be without causing the block to move if the force acts downward at  from the horizontal

(c)

At θ = -60°

F=0.5211kg9.8m/s2cos-60°+0.52sin-60°=1,1×103N

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each hand on one side and the fingers on the opposite side (Fig. 6-21). Sincosky’s mass was 79kg. If the coefficient of static friction between hand and rafter was 0.70, what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky’s grip was remarkable, try to repeat his stunt)

In Fig. 6-24, a forceacts on a block weighing 45N.The block is initially at rest on a plane inclined at angle θ=150to the horizontal. The positive direction of the x axis is up the plane. Between block and plane, the coefficient of static friction is μs=0.50and the coefficient of kinetic friction is μk=0.34. In unit-vector notation, what is the frictional force on the block from the plane when is (a) (-5.0N)i^, (b) (-8.0N)i^, and (c) (-15N)?

Engineering a highway curve.If a car goes through a curve too fast, the car tends to slide out of the curve. For a banked curve with friction, a frictional force acts on a fast car to oppose the tendency to slide out of the curve; the force is directed down the bank (in the direction water would drain). Consider a circular curve of radius R 200 mand bank angle u, where the coefficient of static friction between tires and pavement is. A car (without negative lift) is driven around the curve as shown in Fig. 6-11. (a) Find an expression for the car speed Vmaxthat puts the car on the verge of sliding out.

(b) On the same graph, plot Vmaxversus angle u for the range 0°to50°, first forμs=0.60(dry pavement) and then forμs=0.050(wet or icy pavement). In kilometers per hour, evaluateVmaxfor a bank angle ofθ=10°and for

(c)μs=0.60and

(d)μs=0.050. (Now you can see why accidents occur in highway curves when icy conditions are not obvious to drivers, who tend to drive at normal speeds.)

Figure 6-53 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.040 kg, the string has length L=0.90 mand negligible mass, and the bob follows a circular path of circumference 0.94 m. What are

(a) the tension in the string and

(b) the period of the motion?

In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius R = 250 m. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free