Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the early afternoon, a car is parked on a street that runs down a steep hill, at an angle of35.0°relative to the horizontal. Just then the coefficient of static friction between the tires and the street surface is 0.725. Later, after nightfall, a sleet storm hits the area, and the coefficient decreases due to both the ice and a chemical change in the road surface because of the temperature decrease. By what percentage must the coefficient decrease if the car is to be in danger of sliding down the street?

Short Answer

Expert verified

At 3.4% the coefficient decreases from the given 0.725 value of coefficient of static friction.

Step by step solution

01

Given

Original coefficient of static friction:μs=0.725

02

Understanding the concept

The problem deals with the Newton’s second law of motion which states that the acceleration of an object is dependent upon the net force acting upon the object and the mass of the object. Draw the free body diagram and then use Newton’s second law.

03

Draw the free body diagram

Free body diagram:

04

Calculate the percentage decrease in coefficient if the car is to be in danger of sliding down the street

The car is in “danger of sliding” down when,

mgsin35°=fs=fs.maxmgsin35°=μs×mgcos35°sin35°=μs×cos35°

tan35°=μsμs=0.700

Comparison with original value:1-0.7000.725=0.0343.4%less

This value represents a 3.45% decrease from the given 0.725 value of coefficient of static friction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the magnitude of the drag force on a missile 53 cmin diameter cruising at 250 m/sat low altitude, where the density of air is1.2kg/m3. AssumeC=0.75.

A ski that is placed on snow will stick to the snow. However, when the ski is moved along the snow, the rubbing warms and partially melts the snow, reducing the coefficient of kinetic friction and promoting sliding. Waxing the ski makes it water repellent and reduces friction with the resulting layer of water. A magazine reports that a new type of plastic ski is especially water repellent and that, on a gentle 200 mslope in the Alps, a skier reduced his top-to-bottom time from 61 swith standard skis to 42 swith the new skis. Determine the magnitude of his average acceleration with (a) the standard skis and (b) the new skis. Assuming a 3.0°slope, compute the coefficient of kinetic friction for (c) the standard skis and (d) the new skis.

Block B in Fig. 6-31 weighs 711N.The coefficient of static friction between block and table is 0.25; angle θis 300; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary?

In Fig. 6-15, a horizontal force of 100Nis to be applied to a 10kg slab that is initially stationary on a frictionless floor, to accelerate the slab. A 10kg block lies on top of the slab; the coefficient of friction μbetween the block and the slab is not known, and the block might slip. In fact, the contact between the block and the slab might even be frictionless. (a) Considering that possibility, what is the possible range of values for the magnitude of the slab’s accelerationlocalid="1657173176346" aslab? (Hint:You don’t need written calculations; just consider extreme values for m.) (b) What is the possible range for the magnitudelocalid="1657173167508" ablockof the block’s acceleration?

What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is29km/hand theμsbetween tires and track is0.32?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free