Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the early afternoon, a car is parked on a street that runs down a steep hill, at an angle of35.0°relative to the horizontal. Just then the coefficient of static friction between the tires and the street surface is 0.725. Later, after nightfall, a sleet storm hits the area, and the coefficient decreases due to both the ice and a chemical change in the road surface because of the temperature decrease. By what percentage must the coefficient decrease if the car is to be in danger of sliding down the street?

Short Answer

Expert verified

At 3.4% the coefficient decreases from the given 0.725 value of coefficient of static friction.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

Original coefficient of static friction:μs=0.725

02

Understanding the concept

The problem deals with the Newton’s second law of motion which states that the acceleration of an object is dependent upon the net force acting upon the object and the mass of the object. Draw the free body diagram and then use Newton’s second law.

03

Draw the free body diagram

Free body diagram:

04

Calculate the percentage decrease in coefficient if the car is to be in danger of sliding down the street

The car is in “danger of sliding” down when,

mgsin35°=fs=fs.maxmgsin35°=μs×mgcos35°sin35°=μs×cos35°

tan35°=μsμs=0.700

Comparison with original value:1-0.7000.725=0.0343.4%less

This value represents a 3.45% decrease from the given 0.725 value of coefficient of static friction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A four-person bobsled(totalmass=630kg)comes down a straightaway at the start of a bobsled run. The straightaway is 80.0 mlong and is inclined at a constant angle of10.2°with the horizontal. Assume that the combined effects of friction and air drag produce on the bobsled a constant force of 62.0 Nthat acts parallel to the incline and up the incline. Answer the following questions to three significant digits.

(a) If the speed of the bobsled at the start of the run is 6.20 m/s, how long does the bobsled take to come down the straightaway?

(b) Suppose the crew is able to reduce the effects of friction and air drag to 42.0 N. For the same initial velocity, how long does the bobsled now take to come down the straightaway?

A car weighing 10.7kNand traveling at 13.4 m/swithout negative lift attempts to round an unbanked curve with a radius of 61.0 m. (a) What magnitude of the frictional force on the tires is required to keep the car on its circular path? (b) If the coefficient of static friction between the tires and the road is 0.350, is the attempt at taking the curve successful?

A loaded penguin sled weighing 80Nrests on a plane inclined at angle θ=200to the horizontal (Fig. 6-23). Between the sled and the plane, the coefficient of static friction is 0.25, and the coefficient of kinetic friction is 0.15. (a) What is the least magnitude of the force parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude Fthat will start the sled moving up the plane? (c) What value of Fis required to move the sled up the plane at constant velocity?

In three experiments, three different horizontal forces are applied to the same block lying on the same countertop. The force magnitudes areF1=12N,F2=8N, F3=4N. In each experiment, the block remains stationary in spite of the applied force. Rank the forces according to (a) the magnitude of the static frictional force on the block from the countertop and (b) the maximum value role="math" localid="1660904123305" fs,maxof that force, greatest first.

In Fig. 6-14, a block of massis held stationary on a ramp by the frictional force on it from the ramp. A force f, directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free