Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You must push a crate across a floor to a docking bay. The crate weighs 165 N. The coefficient of static friction between crate and floor is 0.510, and the coefficient of kinetic friction is 0.32. Your force on the crate is directed horizontally. (a) What magnitude of your push puts the crate on the verge of sliding? (b) With what magnitude must you then push to keep the crate moving at a constant velocity? (c) If, instead, you then push with the same magnitude as the answer to (a), what is the magnitude of the crate’s acceleration?

Short Answer

Expert verified

a)Fapplied=84.15N

b)Fapplied=52.8N

c)a=1.87m/s2

Step by step solution

01

Given

Weight of the crate:W=mg=165N

Coefficient of static friction: μs=0.51

Coefficient of kinetic friction:μk=0.32

02

Understanding the concept

The problem deals with the Newton’s laws of motion which describe the relations between the forces acting on a body and the motion of the body. Also it involves friction force. Draw a free body diagram for the given situation and then apply Newton’s first and second law.

Formula:

Frictional force is given by,

fk=μkFN

03

Draw the free body diagram

04

 Calculate the magnitude of your push puts the crate on the verge of sliding

(a)

The push or the Fappliedto get the crate just moving the applied force must be as big as the maximum force of static friction = fs.max=μsFNand here FN=W=165N

Hence, required push,

Fapplied=fs.max=μsFNFapplied=0.51×165NFapplied=84.15N

05

Step 5: Find out with what magnitude the crate must be pushed to keep it moving at a constant velocity

(b)

While in motion, constant velocity (zero acceleration) is maintained if the push is equal to the kinetic friction force

Fapplied=fk=μsFNFapplied=0.32×165NFapplied=52.8N

06

Step 6: If the crate is pushed with the same magnitude as the answer to (a), calculate the magnitude of the crate’s acceleration

(c)

Mass of the crate,

m=165N9.8m/s2=16.84kg

The acceleration, using the push from part (a), is:

a=84.15N-52.8N16.84kg

a=1.87m/s2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An85.0kgpassenger is made to move along a circular path of radiusr=3.50min uniform circular motion. (a) Figure 6-40a is a plot of the required magnitudeFof the net centripetal force for a range of possible values of the passenger’s speed v. What is the plot’s slope atV=8.30m/s? (b) Figure 6-40b is a plot of F for a range of possible values ofT, the period of the motion. What is the plot’s slope atrole="math" localid="1654172716493" T=2.50s?

An airplane is flying in a horizontal circle at a speed of 480km/h(Fig. 6-41). If its wings are tilted at angleθ=40°to the horizontal, what is the radius of the circle in which the plane is flying? Assume that the required force is provided entirely by an “aerodynamic lift” that is perpendicular to the wing surface.

A worker pushes horizontally on a 35kgcrate with a force of magnitude 110N. The coefficient of static friction between the crate and the floor is 0.37. (a) What is the value of fa,maxunder the circumstances? (b) Does the crate move? (c) What is the frictional force on the crate from the floor? (d) Suppose, next, that a second worker pulls directly upward on the crate to help out. What is the least vertical pull that will allow the first worker’s 110Npush to move the crate? (e) If, instead, the second worker pulls horizontally to help out, what is the least pull that will get the crate moving?

A police officer in hot pursuit drives her car through a circular turn of radius 300mwith a constant speed of 80.0km/h. Her mass is55.0kg. What are (a) the magnitude and (b) the angle (relative to vertical) of the net force of the officer on the car seat? (Hint: Consider both horizontal and vertical forces)

A 1000kgboat is traveling at90km/h when its engine is shut off. The magnitude of the frictional forcefk between boat and water is proportional to the speed v of the boat:fk=70vwhere

vis in meters per second andfkis in Newton. Find the time required for the boat to slow to45km/h.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free