Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius R = 250 m. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

Short Answer

Expert verified

The greatest speed at which he can drive without the car leaving the road at the top of the hill 178 km/h .

Step by step solution

01

Identification of the given data

The given data is shown as below,

The radius of the path is,R = 250 m

02

Definition of centripetal force and Newton’s second law

Newton’s second law of motion states that the acceleration of an object is dependent upon the net force acting upon the object and the mass of the object. Also, it involvescentripetal force.

A centripetal force is a force that makes a body follow a curved path.

03

Determination of the greatest speed at which the stuntman can drive without the car leaving the road at the top of the hill

At the top of the circular hill the vertical forces on the car are the upward normal force exerted by the ground and the downward pull of gravity. Write the expression for the force.

mg-FN=mv2R

Here, mis the mass of the car, g is the acceleration due to gravity, FNis the upward normal force exerted by the ground, v is the greatest speed at the given conditions, Rand is the radius of the path.

It is known that FN=0. So, substitute it in the above expression and rearrange it.

mg-0=mv2Rmg=mv2Rg=v2Rv2=gRv=gR

Substitute 9.8 m/s2 for g, and 250 m forR in the above expression.

v=9.8m/s2×250m=49.5m/s=49.5×36001000km/h=178km/h

Thus, the greatest speed at which he can drive without the car leaving the road at the top of the hill 178 km/h .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each hand on one side and the fingers on the opposite side (Fig. 6-21). Sincosky’s mass was 79kg. If the coefficient of static friction between hand and rafter was 0.70, what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky’s grip was remarkable, try to repeat his stunt)

A person riding a Ferris wheel moves through positions at (1) the top, (2) the bottom, and (3) mid height. If the wheel rotates at a constant rate, rank these three positions according to (a) the magnitude of the person’s centripetal acceleration, (b) the magnitude of the net centripetal force on the person, and (c) the magnitude of the normal force on the person, greatest first.

Two blocks, of weights 3.6 Nand 7.2 N, are connectedby a massless string and slide down a30°inclined plane. The coefficient of kinetic friction between the lighter block and the plane is 0.10, and the coefficient between the heavier block and the plane is 0.20. Assuming that the lighter block leads, find (a) the magnitude of the acceleration of the blocks and (b) the tension in the taut string.

A house is built on the top of a hill with a nearby slope at angleθ=45°(Fig. 6-55). An engineering study indicates that the slope angle should be reduced because the top layers of soil along the slope might slip past the lower layers. If the coefficient of static friction between two such layers is 0.5, what is the least angle ϕthrough which the present slope should be reduced to prevent slippage?

In 1987, as a Halloween stunt, two skydivers passed a pumpkin back and forth between them while they were in free fall just west of Chicago. The stunt was great fun until the last skydiver with the pumpkin opened his parachute. The pumpkin broke free from his grip, plummeted about0.5 km, and ripped through the roof of a house, slammed into the kitchen floor, and splattered all over the newly remodeled kitchen. From the sky diver’s viewpoint and from the pumpkin’s viewpoint, why did the skydiver lose control of the pumpkin?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free