Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the magnitude of the drag force on a missile 53 cmin diameter cruising at 250 m/sat low altitude, where the density of air is1.2kg/m3. AssumeC=0.75.

Short Answer

Expert verified

The magnitude of the drag force is D=6.2×103N.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data 

  • Radius of missile: R=532cm=0.265m.
  • Velocity=250m/s .
  • The density of air: ρ=1.2kg/m3.
  • Drag coefficient: C=0.75.
02

Understanding the concept

The problem is based on the concept of drag force. In fluid mechanics, it is the force acting opposite to the relative motion of any object moving with respect to a surrounding fluid.

Formula:

D=12CρAv2

Where c = drag coefficient

ρ= density of the medium

A = area of cross-section of the body

v = the velocity of the body through the medium

03

Step 3: Calculate the magnitude of the drag force on a missile

The magnitude of drag force on the missile:

D=12CρAv2=12CρAπR2v2

Substitute values in the above expression, and we get,

D=12×0.75×1.2kg/m3×3.14×0.265m2×250m/s2D=6201.7N

Thus, the magnitude of the drag force is6.2×103N .

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Repeat Question 1 for force F angled upward instead of downward as drawn.

Figure 6-16 shows the overhead view of the path of an amusement-park ride that travels at constant speed through five circular arcs of radii,R0,2R0and3R0. Rank the arcs according to the magnitude of the centripetal force on a rider traveling in the arcs, greatest first.

In three experiments, three different horizontal forces are applied to the same block lying on the same countertop. The force magnitudes areF1=12N,F2=8N, F3=4N. In each experiment, the block remains stationary in spite of the applied force. Rank the forces according to (a) the magnitude of the static frictional force on the block from the countertop and (b) the maximum value role="math" localid="1660904123305" fs,maxof that force, greatest first.

A 1.5 kgbox is initially at rest on a horizontal surface when at t =0 a horizontal force f=(1.8t)iN(with tin seconds) is applied to the box. The acceleration of the box as a function of time tis given b role="math" localid="1660971208695" a=0for0t2.8sand:a=(1.2t-2.4)im/s2 for t>2.8 s(a) what is the coefficient of static friction between the box and the surface? (b) What is the coefficient of kinetic friction between the box and the surface?

In Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 6-28, the magnitude Frequired of the cord’s force on the sled is plotted versus a range of values for the coefficient of static frictionμs between sled and plane: F1=2.0N, F2=5.0N, and μ2=0.50. At what angle θis the plane inclined?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free