Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A house is built on the top of a hill with a nearby slope at angleθ=45°(Fig. 6-55). An engineering study indicates that the slope angle should be reduced because the top layers of soil along the slope might slip past the lower layers. If the coefficient of static friction between two such layers is 0.5, what is the least angle ϕthrough which the present slope should be reduced to prevent slippage?

Short Answer

Expert verified

ϕ=20°

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

  • The initial angle of slope,θ=45°
  • Coefficient of static friction,μs=0.50 .
02

Understanding the concept

The problem deals with Newton’s laws of motion which describe the relations between the forces acting on a body and the motion of the body.Using the application of Newton’s laws, the given problem can be solved.

Formula:

θ=tan-1μs

03

Calculate the least angle ϕ through which the present slope should be reduced to prevent slippage

The maximum angle for which static friction applies is given by,

θ=tan-1μs

Substitute the values in the above expression, and we get,

θ=tan-10.50θ=27°

This implies that the angle through which the slope should be reduced is,

ϕ=45°-27°20°

Thus, is the least angle through which the present slope should be reduced to prevent slippage is 20 degrees.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 110 ghockey puck sent sliding over ice is stopped in 15 mby the frictional force on it from the ice.

(a) If its initial speed is 6.0 m/s, what is the magnitude of the frictional force?

(b) What is the coefficient of friction between the puck and the ice?

A roller-coaster car at an amusement park has a mass of1200kgwhen fully loaded with passengers. As the car passes over the top of a circular hill of radius18m, assume that its speed is not changing. At the top of the hill, what are the (a) magnitudeFNand (b) direction (up or down) of the normal force on the car from the track if the car’s speed isV=11m/s? What are (c)FNand (d) the direction ifV=14m/s?

In Fig. 6-27, a box of Cheerios (massmc=1.0kg)and a box of Wheaties(massmw=3.0kg)are accelerated across a horizontal surface by a horizontal force Fapplied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0N, and the magnitude of the frictional force on the Wheaties box is 4.0N. If the magnitude ofF is 12N, what is the magnitude of the force on the Wheaties box from the Cheerios box?

In Fig. 6-54, the coefficient of kinetic friction between the block and inclined plane is 0.20, and angle θis 60°. What are the

(a) magnitude aand

(b) direction (up or down the plane) of the block’s acceleration if the block is sliding down the plane?

What are (c) aand (d) the direction if the block is sent sliding up the plane?

You must push a crate across a floor to a docking bay. The crate weighs 165 N. The coefficient of static friction between crate and floor is 0.510, and the coefficient of kinetic friction is 0.32. Your force on the crate is directed horizontally. (a) What magnitude of your push puts the crate on the verge of sliding? (b) With what magnitude must you then push to keep the crate moving at a constant velocity? (c) If, instead, you then push with the same magnitude as the answer to (a), what is the magnitude of the crate’s acceleration?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free