Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 6-53 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.040 kg, the string has length L=0.90 mand negligible mass, and the bob follows a circular path of circumference 0.94 m. What are

(a) the tension in the string and

(b) the period of the motion?

Short Answer

Expert verified

a)T=0.4Nb)t=1.9s

Step by step solution

01

Given data

  • The circumference of the circular path “r” is 0.94 m .
  • The length of the cord “L” is 0.9 m .
  • The mass of bob “m” is 0.04 kg .
02

To understand the concept

The problem deals with Newton’s second law of motion, which states that the acceleration of an object is dependent upon the net force acting upon the object and the mass of the object.

Calculate the angle made by the cord.

Use Newton’s second law of motion to calculate the tension in the cord. After calculating the tension, calculate the velocity of the bob and the time required to complete one revolution.

03

(a) Calculate the tension in the string

The radius of the circular path R,

R=r2π=0.94m2π=0.15m

The angle cord makes with horizontal:

θ=cos-1R/L=cos-10.15m/0.94m=80°

To calculate tension, apply Newton’s second law of motion in a vertical direction:

Tsinθ=mg

Substitute the values in the above expression, and we get,

T=0.04kg×9.8m/s2sin80°=0.4N

Thus, the tension in the string is 0.4 N.

04

(b) Calculate the period of the motion

To calculate the velocity of bob, apply Newton’s second law of motion horizontal direction:

Tcosθ=mv2Rv=R×Tcosθm

Substitute the values in the above expression, and we get,

v=0.15m×0.4Ncos80°0.04kg=0.49m/s

To calculate the time to complete one revolution:

t=0.94m0.49m/s=1.9s

Thus, the period of motion is 1.9 s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-24, a forceacts on a block weighing 45N.The block is initially at rest on a plane inclined at angle θ=150to the horizontal. The positive direction of the x axis is up the plane. Between block and plane, the coefficient of static friction is μs=0.50and the coefficient of kinetic friction is μk=0.34. In unit-vector notation, what is the frictional force on the block from the plane when is (a) (-5.0N)i^, (b) (-8.0N)i^, and (c) (-15N)?

Reconsider Question 6 but with the force fnow directed down the ramp. As the magnitude of fis increased from zero, what happens to the direction and magnitude of the frictional force on the block?

A 12Nhorizontal force Fpushes a block weighing 5.0Nagainst a vertical wall (Fig. 6-26). The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?

An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 1100N. The coefficient of static friction between the box and the floor is 0.35. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation?

A block is pushed across a floor by a constant force that is applied at downward angle θ(Fig. 6-19). Figure 6-36 gives the acceleration magnitude a versus a range of values for the coefficient of kinetic friction μkbetween block and floor: a1=3.0m/s, μk2=0.20, μk3=0.40.What is the value of θ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free