Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 6-45, a1.34kgball is connected by means of two massless strings, each of lengthL=1.70m, to a vertical, rotating rod. The strings are tied to the rod with separationd=1.70mand are taut. The tension in the upper string is35N. What are the

(a) tension in the lower string,

(b) magnitude of the net forceFneton the ball, and

(c) speed of the ball?

(d) What is the direction ofF?

Short Answer

Expert verified
  1. Tl is 8.74 N.
  2. Fnet,stis37.9 N.
  3. v is 6.45 m/s.
  4. The direction of Fnet,stris leftward.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

  • Mass of ball,m=1.34 kg.
  • Length of each string,L=1.70 m.
  • The separation between two strings tied to rod,d=1.70 m.
  • Tension in the upper string,Tu=35 N .
02

To understand the concept

Using the concept of centripetal force and applying Newton's second law, we can solve the given problem. Note that the tensions in the strings provide the source of centripetal force.

03

Draw the free body diagram and write the force equations

The given system consists of a ball connected by two strings to a rotating rod. The tensions in the strings provide the source of centripetal force.

The free-body diagram for the ball is shown below. Tuis the tension exerted by the upper string on the ball, Tlis the tension in the lower string, and role="math" localid="1661234901128" mis the mass of the ball. Note that the tension in the upper string is greater than the tension in the lower string. It must balance the downward pull of gravity and the force of the lower string.

We take the+xdirection to be leftward (toward the center of the circular orbit) and+yupward. Since the magnitude of the acceleration isa=v2/R, thexcomponent of Newton's second law is,

Tucosθ+Tlcosθ=mv2R

Wherevis the speed of the ball, andR is the radius of its orbit.
They component is,

TusinθTlsinθmg=0

The second equation gives the tension in the lower string:

Tl=Tumg/sinθ.

04

(a) Calculate the tension in the lower string

Since the triangle is equilateral, the angle isθ=30.0o.

Thus,

Tl=Tumgsinθ

Substitute the values, and we get,

Tl=35.0 N(1.34 kg)(9.80 m/s2)sin30.0Tl=8.74 N

Thus, Tl is 8.74 N.

05

(b) Calculate the magnitude of the net force F¯net on the ball 

The net force in they direction is zero. In thex-direction, the net force has magnitude as:

Fnet,st=(Tu+Tl)cosθ

Substitute the values, and we get,

Fnet,st=(35.0 N+8.74 N)cos30.0oFnet,st=37.9 N

Thus, Fnet,stis37.9 N.

06

(c) Calculate the speed of the ball 

The radius of the path is,

R=Lcosθ

Substitute the values, and we get,

R=(1.70 m)cos30o=1.47 m

Using thisFnet,str=mv2/R, we find the speed of the ball to be,

v=RFnet,strm

Substitute the values, and we get,

v=(1.47m)(37.9N)1.34 kgv=6.45 m/s

Thus, v is 6.45 m/s.

07

(d) Calculate the direction of F 

The direction of Fnet,stris leftward (radially inward).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-39, a car is driven at constant speed over a circular hill and then into a circular valley with the same radius. At the top of the hill, the normal force on the driver from the car seat is 0. The driver’s mass is 70.0kg.What is the magnitude of the normal force on the driver from the seat when the car passes through the bottom of the valley?

An airplane is flying in a horizontal circle at a speed of 480km/h(Fig. 6-41). If its wings are tilted at angleθ=40°to the horizontal, what is the radius of the circle in which the plane is flying? Assume that the required force is provided entirely by an “aerodynamic lift” that is perpendicular to the wing surface.

A loaded penguin sled weighing 80Nrests on a plane inclined at angle θ=200to the horizontal (Fig. 6-23). Between the sled and the plane, the coefficient of static friction is 0.25, and the coefficient of kinetic friction is 0.15. (a) What is the least magnitude of the force parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude Fthat will start the sled moving up the plane? (c) What value of Fis required to move the sled up the plane at constant velocity?

In Fig. 6-34, blocks A and B have weights of 44Nand 22N, respectively. (a) Determine the minimum weight of block C to keep A from sliding if μkbetween A and the table is 0.20. (b) Block C suddenly is lifted off A. What is the acceleration of block A if μkbetween A and the table is 0.15?

In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius R = 250 m. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free