Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A bolt is threaded onto one end of a thin horizontal rod, and the rod is then rotated horizontally about its other end. An engineer monitors the motion by flashing a strobe lamp onto the rod and bolt, adjusting the strobe rate until the bolt appears to be in the same eight places during each full rotation of the rod (Fig. 6-42). The strobe rate is2000flashes per second; the bolt has mass30gand is at radius3.5cm. What is the magnitude of the force on the bolt from the rod?

Short Answer

Expert verified

The magnitude of the force is 2.6ร—103โ€‰N.

Step by step solution

01

Given data

  • Mass of bolt,m=30.0g .
  • Radius,r=3.5cm
  • Strobe rate,2000flashespersecond.
02

To understand the concept

The problem deals with the centripetal force. It is a force that makes a body follow a curved path.From the given information, the time period can be calculated. The force on the bolt from the rod is the centripetal force which can be calculated using its formula.

Formula:

Centripetal force is given by,

F=mv2r

03

Calculate the centripetal force 

We note that the periodTis eight times the time between flashes12000โ€‰s.

So T=0.0040s.

We know that,

T=2ฯ€rv

Also, centripetal force is given by,

F=mv2r

Combining the above two equations leads to,

F=4mฯ€2RT2

Substitute the values in the above equation, and we get,

F=4(0.030โ€‰kg)ฯ€2(0.035โ€‰m)(0.0040โ€‰s)2F=2.6ร—103โ€‰N

Thus, the magnitude of the force is 2.6ร—103โ€‰N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A student wants to determine the coefficients of static friction and kinetic friction between a box and a plank. She places the box on the plank and gradually raises one end of the plank. When the angle of inclination with the horizontal reaches30ยฐ, the box starts to slip, and it then slides 2.5 mdown the plank in 4.0 sat constant acceleration. What are

(a) the coefficient of static friction and

(b) the coefficient of kinetic friction between the box and the plank?

Figure 6-32 shows three crates being pushed over a concrete floor by a horizontal force of magnitude 440N. The masses of the crates are m1=30.3kg, m2=10.1kg, and m2=20.0kg.The coefficient of kinetic friction between the floor and each of the crates is 0.700. (a) What is the magnitude F32of the force on crate 3 from crate 2? (b) If the crates then slide onto a polished floor, where the coefficient of kinetic friction is less than 0.700, is magnitude F32more than, less than, or the same as it was when the coefficient was 0.700?

Figure 6-16 shows the overhead view of the path of an amusement-park ride that travels at constant speed through five circular arcs of radii,R0,2R0and3R0. Rank the arcs according to the magnitude of the centripetal force on a rider traveling in the arcs, greatest first.

You must push a crate across a floor to a docking bay. The crate weighs 165 N. The coefficient of static friction between crate and floor is 0.510, and the coefficient of kinetic friction is 0.32. Your force on the crate is directed horizontally. (a) What magnitude of your push puts the crate on the verge of sliding? (b) With what magnitude must you then push to keep the crate moving at a constant velocity? (c) If, instead, you then push with the same magnitude as the answer to (a), what is the magnitude of the crateโ€™s acceleration?

In Fig. 6-37, a slab of mass m1=40kgrests on a frictionless floor, and a block of mas m2=10kgrests on top of the slab. Between block and slab, the coefficient of static friction is 0.60, and the coefficient of kinetic friction is 0.40. A horizontal force of magnitude 100Nbegins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of (a) the block and (b) the slab?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free