Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A roller-coaster car at an amusement park has a mass of1200kgwhen fully loaded with passengers. As the car passes over the top of a circular hill of radius18m, assume that its speed is not changing. At the top of the hill, what are the (a) magnitudeFNand (b) direction (up or down) of the normal force on the car from the track if the car’s speed isV=11m/s? What are (c)FNand (d) the direction ifV=14m/s?

Short Answer

Expert verified

Massofroller-coastercar=1200kg,Radiusofcirularhill=18m,Velocity=11m/sand14m/s

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

Massofroller-coastercar=1200kg,Radiusofcirularhill=18m,Velocity=11m/sand14m/s

02

Determining the concept

This problem is based on the concept of uniform circular motion. Uniform circular motion is a motion in which an object moves in a circular path with constant velocity. Also, it involves Newton’s second law of motion.

Formula:

The velocity in uniform circular motion is given by,

v=2πRT

where, v is the velocity, R is the radius and T is the time period

According to Newton’s second law of motion

FN-mg=mac

where,acis an acceleration, g is an acceleration due to gravity, m is mass,FNis the normal force and R is the radius.

03

(a) Determining the magnitude of force

In this case consider the normal force pointing upward direction and gravity pointing downwards. Also, the direction to the center of the circle (the direction of centripetal acceleration) is down.

The centripetal acceleration then will be,

ac=v2R

Thus, equation (ii) leads to,

FN-mg=m-v2r

FN=1200g-1200(11)218

=3.7×103N

Thus, whenv=11m/s, the magnitude ofFN=3.7×103N.

04

(b) Determining the direction of the normal force on the car from the trace

From above, the value ofFNis positive.

Thus,FNpoints upward.

05

(c) Determining the magnitude of force if v= 14 m/s

When v=14m/sFN=-1.3×103N,orFN=1.3×103N

Thus, the magnitude ofFNis1.3kN

06

(d) Determining the direction of force if v=14 m/s

The fact that this answer is negative means thatFNpoints opposite to what was assumed.

Thus, its direction is down.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-27, a box of Cheerios (massmc=1.0kg)and a box of Wheaties(massmw=3.0kg)are accelerated across a horizontal surface by a horizontal force Fapplied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0N, and the magnitude of the frictional force on the Wheaties box is 4.0N. If the magnitude ofF is 12N, what is the magnitude of the force on the Wheaties box from the Cheerios box?

During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a20°dive for a test of the aircraft’s 20 mmmachine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds. Then, after allowing the cannons to cool, he shot another burst at 2000 m; his speed was then344 m/s, the speed of the rounds relative to him was 730 m/s, and he was still in a dive. Almost immediately the canopy around him was shredded and his right air intake was damaged. With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)

In Fig. 6-15, a horizontal force of 100Nis to be applied to a 10kg slab that is initially stationary on a frictionless floor, to accelerate the slab. A 10kg block lies on top of the slab; the coefficient of friction μbetween the block and the slab is not known, and the block might slip. In fact, the contact between the block and the slab might even be frictionless. (a) Considering that possibility, what is the possible range of values for the magnitude of the slab’s accelerationlocalid="1657173176346" aslab? (Hint:You don’t need written calculations; just consider extreme values for m.) (b) What is the possible range for the magnitudelocalid="1657173167508" ablockof the block’s acceleration?

The two blocks(m=16kgandM=88kg)in Fig. 6-38 are not attached to each other. The coefficient of static friction between the blocks is μs=0.38,but the surface beneath the larger block is frictionless. What is the minimum magnitude of the horizontal force Frequired to keep the smaller block from slipping down the larger block?

A student wants to determine the coefficients of static friction and kinetic friction between a box and a plank. She places the box on the plank and gradually raises one end of the plank. When the angle of inclination with the horizontal reaches30°, the box starts to slip, and it then slides 2.5 mdown the plank in 4.0 sat constant acceleration. What are

(a) the coefficient of static friction and

(b) the coefficient of kinetic friction between the box and the plank?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free