Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cat dozes on a stationary merry-go-round in an amusement park, at a radius of5.4mfrom the center of the ride. Then the operator turns on the ride and brings it up to its proper turning rate of one complete rotation every6.0s.What is the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding (or the cat clinging with its claws)?

Short Answer

Expert verified

The least coefficient of static friction between the cat and the merry-go-round is0.60.

Step by step solution

01

Given

R=5.4mT=6.0s

02

Determining the concept

This problem is based on the concept of uniform circular motion. Uniform circular motion is a motion in which an object moves in a circular path with constant velocity.

Formula:

The velocity in uniform circular motion is given by,

v=2πRT

where, v is the velocity, R is the radius andTis the time period

03

Determining the least coefficient of static friction between the cat and the merry-go-round

As the cat moving in the circular motion, it has centripetal accelerati ac=v2R, and frictional force is also directed to the center of the circle.

By using the Newton’s 2nd law along the horizontal direction,

-fs=-mv2R

μsmg=mv2R

μs=v2gR=2πRT2gR=4π2RgT2=4×π2×5.49.81×62=0.60

Hence, the least coefficient of static friction between the cat and the merry-go-round is 0.60.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius R = 250 m. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

A box of canned goods slides down a ramp from street level into the basement of a grocery store with acceleration0.75m/s2directed down the ramp. The ramp makes an angle of40°with the horizontal. What is the coefficient of kinetic friction between the box and the ramp?

A 4.10kgblock is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0N. Figure 6-30 gives the block’s speed vversus time tas the block moves along an xaxis on the floor. The scale of the figure’s vertical axis is set by vs=5.0m/s. What is the coefficient of kinetic friction between the block and the floor

In Fig. 6-51, a crate slides down an inclined right-angled trough. The coefficient of kinetic friction between the crate and the trough isμk. What is the acceleration of the crate in terms of μk,θ, and g?

A loaded penguin sled weighing 80Nrests on a plane inclined at angle θ=200to the horizontal (Fig. 6-23). Between the sled and the plane, the coefficient of static friction is 0.25, and the coefficient of kinetic friction is 0.15. (a) What is the least magnitude of the force parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude Fthat will start the sled moving up the plane? (c) What value of Fis required to move the sled up the plane at constant velocity?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free