Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 1000kgboat is traveling at90km/h when its engine is shut off. The magnitude of the frictional forcefk between boat and water is proportional to the speed v of the boat:fk=70vwhere

vis in meters per second andfkis in Newton. Find the time required for the boat to slow to45km/h.

Short Answer

Expert verified

The time required for the boat to slow to45km/his9.9s

Step by step solution

01

Given

Mass of the boat, m=1000kg

Frictional force, fk=70vwherevis the speed of the boat.

Initial speed of the boat when engine is shut off,v0=90km/h

Final speed of the boat after time t, is

v=45km/h=v02km/h

02

Determining the concept

In this problem, the frictional force is not constant, but instead proportional to the speed of the boat. Integration is required to solve for the speed. Also, it involves Newton’s second law. According to Newton's 2nd law of motion, a force applied to an object at rest causes it to accelerate in the direction of the force.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the time required for the boat

Take the direction of the boat’s motion to be positive. Newton’s second law gives,

F=ma-fk=mdvdt-70v=mdvdtdvdt=-70mvdvv=-70mdt

Taking integration to both sides,

vovdvv=-70mt-0tdtInvv0=-70mtt=-m70Inv0/2v0=-100070-0.693=9.9

Hence, the time required for the boat to slow to45km/his9.9s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume Eq. 6-14 gives the drag force on a pilot plus ejection seat just after they are ejected from a plane traveling horizontally at1300km/h. Assume also that the mass of the seat is equal to the mass of the pilot and that the drag coefficient is that of a sky diver. Making a reasonable guess of the pilot’s mass and using the appropriatevtvalue from Table 6-1, estimate the magnitudes of (a) the drag force on the pilot seatand (b) their horizontal deceleration (in terms of g), both just after ejection. (The result of (a) should indicate an engineering requirement: The seat must include a protective barrier to deflect the initial wind blast away from the pilot’s head)

A filing cabinet weighing 556 Nrests on the floor. The coefficient of static friction between it and the floor is 0.68, and the coefficient of kinetic friction is 0.56. In four different attempts to move it, it is pushed with horizontal forces of magnitudes (a) 222 N, (b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate the magnitude of the frictional force on it from the floor. (The cabinet is initially at rest.) (e) In which of the attempts does the cabinet move?

A roller-coaster car at an amusement park has a mass of1200kgwhen fully loaded with passengers. As the car passes over the top of a circular hill of radius18m, assume that its speed is not changing. At the top of the hill, what are the (a) magnitudeFNand (b) direction (up or down) of the normal force on the car from the track if the car’s speed isV=11m/s? What are (c)FNand (d) the direction ifV=14m/s?

What is the terminal speed of a 6.00 kgspherical ball that has a radius of 30 cmand a drag coefficient of 1.60? The density of the air through which the ball falls is1.20kg/m3.

A box is on a ramp that is at angleθto the horizontal. Asθ is increased from zero, and before the box slips, do the following increase, decrease, or remain the same: (a) the component of the gravitational force on the box, along the ramp, (b) the magnitude of the static frictional force on the box from the ramp, (c) the component of the gravitational force on the box, perpendicular to the ramp, (d) the magnitude of the normal force on the box from the ramp, and (e) the maximum valuefs,max of the static frictional force?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free