Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 1000kgboat is traveling at90km/h when its engine is shut off. The magnitude of the frictional forcefk between boat and water is proportional to the speed v of the boat:fk=70vwhere

vis in meters per second andfkis in Newton. Find the time required for the boat to slow to45km/h.

Short Answer

Expert verified

The time required for the boat to slow to45km/his9.9s

Step by step solution

01

Given

Mass of the boat, m=1000kg

Frictional force, fk=70vwherevis the speed of the boat.

Initial speed of the boat when engine is shut off,v0=90km/h

Final speed of the boat after time t, is

v=45km/h=v02km/h

02

Determining the concept

In this problem, the frictional force is not constant, but instead proportional to the speed of the boat. Integration is required to solve for the speed. Also, it involves Newton’s second law. According to Newton's 2nd law of motion, a force applied to an object at rest causes it to accelerate in the direction of the force.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the time required for the boat

Take the direction of the boat’s motion to be positive. Newton’s second law gives,

F=ma-fk=mdvdt-70v=mdvdtdvdt=-70mvdvv=-70mdt

Taking integration to both sides,

vovdvv=-70mt-0tdtInvv0=-70mtt=-m70Inv0/2v0=-100070-0.693=9.9

Hence, the time required for the boat to slow to45km/his9.9s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A baseball player with massm=79kg, sliding into second base, is retarded by a frictional force of magnitude470N.What is the coefficient of kinetic frictionμkbetween the player and the ground?

During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a20°dive for a test of the aircraft’s 20 mmmachine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds. Then, after allowing the cannons to cool, he shot another burst at 2000 m; his speed was then344 m/s, the speed of the rounds relative to him was 730 m/s, and he was still in a dive. Almost immediately the canopy around him was shredded and his right air intake was damaged. With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)

Block B in Fig. 6-31 weighs 711N.The coefficient of static friction between block and table is 0.25; angle θis 300; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary?

An 8.0 kgblock of steel is at rest on a horizontal table. The coefficient of static friction between the block and the table is 0.450. A force is to be applied to the block. To three significant figures, what is the magnitude of that applied force if it puts the block on the verge of sliding when the force is directed

(a) horizontally,

(b) upward at60.0°from the horizontal, and

(c) downward at60.0°from the horizontal?

In Fig. 6-24, a forceacts on a block weighing 45N.The block is initially at rest on a plane inclined at angle θ=150to the horizontal. The positive direction of the x axis is up the plane. Between block and plane, the coefficient of static friction is μs=0.50and the coefficient of kinetic friction is μk=0.34. In unit-vector notation, what is the frictional force on the block from the plane when is (a) (-5.0N)i^, (b) (-8.0N)i^, and (c) (-15N)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free