Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 1000kgboat is traveling at90km/h when its engine is shut off. The magnitude of the frictional forcefk between boat and water is proportional to the speed v of the boat:fk=70vwhere

vis in meters per second andfkis in Newton. Find the time required for the boat to slow to45km/h.

Short Answer

Expert verified

The time required for the boat to slow to45km/his9.9s

Step by step solution

01

Given

Mass of the boat, m=1000kg

Frictional force, fk=70vwherevis the speed of the boat.

Initial speed of the boat when engine is shut off,v0=90km/h

Final speed of the boat after time t, is

v=45km/h=v02km/h

02

Determining the concept

In this problem, the frictional force is not constant, but instead proportional to the speed of the boat. Integration is required to solve for the speed. Also, it involves Newton’s second law. According to Newton's 2nd law of motion, a force applied to an object at rest causes it to accelerate in the direction of the force.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the time required for the boat

Take the direction of the boat’s motion to be positive. Newton’s second law gives,

F=ma-fk=mdvdt-70v=mdvdtdvdt=-70mvdvv=-70mdt

Taking integration to both sides,

vovdvv=-70mt-0tdtInvv0=-70mtt=-m70Inv0/2v0=-100070-0.693=9.9

Hence, the time required for the boat to slow to45km/his9.9s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-14, a block of massis held stationary on a ramp by the frictional force on it from the ramp. A force f, directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?

A filing cabinet weighing 556 Nrests on the floor. The coefficient of static friction between it and the floor is 0.68, and the coefficient of kinetic friction is 0.56. In four different attempts to move it, it is pushed with horizontal forces of magnitudes (a) 222 N, (b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate the magnitude of the frictional force on it from the floor. (The cabinet is initially at rest.) (e) In which of the attempts does the cabinet move?

In 1987, as a Halloween stunt, two skydivers passed a pumpkin back and forth between them while they were in free fall just west of Chicago. The stunt was great fun until the last skydiver with the pumpkin opened his parachute. The pumpkin broke free from his grip, plummeted about0.5 km, and ripped through the roof of a house, slammed into the kitchen floor, and splattered all over the newly remodeled kitchen. From the sky diver’s viewpoint and from the pumpkin’s viewpoint, why did the skydiver lose control of the pumpkin?

A child weighing 140Nsits at rest at the top of a playground slide that makes an angle of25°with the horizontal. The child keeps from sliding by holding onto the sides of the slide. After letting go of the sides, the child has a constant acceleration of0.86m/s2(down the slide, of course).

(a) What is the coefficient of kinetic friction between the child and the slide?

(b) What maximum and minimum values for the coefficient of static friction between the child and the slide are consistent with the information given here?

A warehouse worker exerts a constant horizontal force of magnitude 85 Non a 40 kgbox that is initially at rest on the horizontal floor of the warehouse. When the box has moved a distance of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic friction between the box and the floor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free