Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A toy chest and its contents have a combined weight of 180NA toy chest and its contents have a combined weight of 0.42.The child in Fig. 6-35 attempts to move the chest across the floor by pulling on an attached rope. (a) If θis 42°whatis the magnitude of the force Fthat the child must exert on the rope to put the chest on the verge ofmoving? (b) Write an expression for the magnituderequired to put the chest on the verge of moving as a function of the angle θ. Determine (c) the value of θfor which Fis a minimum and (d) that minimum magnitude.

Short Answer

Expert verified

a)The magnitude of the force exerted by child is 74N

b)The expression for the magnitude of F or T applied by the child have been found.

c) The θ at which F or T is minimum is 23°

d) The minimum magnitude of Fis 70N

Step by step solution

01

Given

Weight, W=180N

Coefficient of static friction between the toy chest and floor, μs=0.42

Angle,θ=42°

02

Determining the concept

To find the mass of the block of C and the acceleration of block A, draw the free body diagram for each block and then apply Newton's 2nd law of equation.According to Newton's 2nd law of motion, a force applied to an object at rest causes it to accelerate in the direction of the force.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the free body diagram

Free Body Diagram of the toy chest:

04

(a) Determining the magnitude of the force exerted by child

Toy chest is moving with constant velocity that means it has 0 acceleration.By using Newton’s 2nd law of motion along the vertical direction (along y) to the system,(positive x axis along the incline and the positive y along the vertical direction),

N+Fsin42-W=0N=W-Fsin42

Thus, the frictional force is,

fs=μsN=μsW-Fsin42

Now, applying Newton’s 2nd along horizontal direction to the Block(A+C) having mass m,

localid="1654577455841" Fcos42-fs=0Fcos42-μsW-Tsin42=0Fcos42+μssin42-μsW=0F=μsW(cos42+μssin42=0.42180cos42+0.42sin42=74N

Hence, the magnitude of the force exerted by child is 74N

05

(b) Determining the expression for the magnitude of F or T applied by the child

In this case, consider the angle made by the rope to toy chest as θ, then, from above calculations,

F=μsWcosθ+μssinθ=0.42180cosθ+0.42sinθ

Hence, the expression for the magnitude of F or T applied by the child have been found.

06

(c) Determining the θat which For T is minimum

Minimize the above expression for F by working through the condition,

dFdθ=ddθμsWcosθ+μssinθ=μsWsinθ-μscosθcosθ+μssinθ2=0sinθ-μscosθ=0sinθ=μscosθsinθcosθ=μstanθ=μsθ=tan-10.42=23°

Hence, theθat which F or T is minimum is 23°

07

(d) Determining the minimum magnitude of F

Putθ=23°,F=μsWcosθ+μssinθ=0.42180cos23+0.42sin23=70N

Hence, the minimum magnitude of F is 70N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Continuation of Problem 8. Now assume that Eq. 6-14 gives the magnitude of the air drag force on the typical 20kgstone, which presents to the wind a vertical cross-sectional area of0.040m2and has a drag coefficient C of0.80. (a) In kilometers per hour, what wind speedValong the ground is needed to maintain the stone’s motion once it has started moving? Because winds along the ground are retarded by the ground, the wind speeds reported for storms are often measured at a height of10m. Assume wind speeds are2.00 times those along the ground. (b) For your answer to (a), what wind speed would be reported for the storm? (c) Is that value reasonable for a high-speed wind in a storm?

A student, crazed by final exams, uses a force of magnitude 80Nand angleθ=70°to push a 5.0 kg block across the ceiling of his room (Fig. 6-52). If the coefficient of kinetic friction between the block and the ceiling is 0.40, what is the magnitude of the block’s acceleration?

A house is built on the top of a hill with a nearby slope at angleθ=45°(Fig. 6-55). An engineering study indicates that the slope angle should be reduced because the top layers of soil along the slope might slip past the lower layers. If the coefficient of static friction between two such layers is 0.5, what is the least angle ϕthrough which the present slope should be reduced to prevent slippage?

A certain string can withstand a maximum tension of 40 Nwithout breaking. A child ties a 0.37 kgstone to one end and, holding the other end, whirls the stone in a vertical circle of radius 0.91 M, slowly increasing the speed until the string breaks. (a) Where is the stone on its path when the string breaks? (b) What is the speed of the stone as the string breaks?

A bicyclist travels in a circle of radius 25.0 mat a constant speed of 9.00 m/s. The bicycle–rider mass is 85.0 kg. Calculate the magnitudes of

(a) the force of friction on the bicycle from the road and

(b) the netforce on the bicycle from the road.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free