Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 6-33, two blocks are connected over a pulley. The mass of block A is10kg , and the coefficient of kinetic friction between A and the incline is 0.20 . Angle θ of the incline is 30° . Block A slides down the incline at constant speed. What is the mass of block B? Assume the connecting rope has negligible mass. (The pulley’s function is only to redirect the rope)

Short Answer

Expert verified

The mass of block B is3.3kg

Step by step solution

01

Given

Mass of block is A, mA=10kg

Coefficient of kinetic friction between the incline and Body A,μk=0.20

Angle of incline, θ=30°

02

Determining the concept

The problem is based on Newton’s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. To find the acceleration of the body A, use Newton’s 2nd law of motion.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the free body diagram

Free Body Diagram of the body A and body B:

04

Determining the mass of block B

Block A slides down the incline at constant speed.Thus, the acceleration of block A is 0.By using Newton’s 2nd law of motion along the vertical direction (along y) to the system,(positive x axis along the incline and the positive y along the vertical direction),

N=mAgcos30=0N=mAgcos30

Thus, the frictional force,

fk=μkN=μkmAgcos30

Now, applying Newton’s 2nd along horizontal direction to the Body A having massm,

T+fkmAgsin30=0T+μkmAgsin30mAgsin30=0 (1)Similarly, apply to the Body B having mass m’,

mBg-T=0 (ii)

Adding equation (i) and (ii),

mAg+μkmAgsin30mAgsin30=0mB=mAsin(30)μkcos30=3.3kg

Therefore, the mass of block B is 3.3 kg.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mysterious sliding stones.Along the remote Racetrack Playa in Death Valley, California, stones sometimes gouge out prominent trails in the desert floor, as if the stones had been migrating (Fig. 6-18). For years, curiosity mounted about why the stones moved. One explanation was that strong winds during occasional rainstorms would drag the rough stones over ground softened by rain. When the desert dried out, the trails behind the stones were hard-baked in place. According to measurements, the coefficient of kinetic friction between the stones and the wet playground is about.What horizontal force must act on astone (a typical mass) to maintain the stone’s motion once a gust has started it moving? (Story continues with Problem 37)

In Fig. 6-34, blocks A and B have weights of 44Nand 22N, respectively. (a) Determine the minimum weight of block C to keep A from sliding if μkbetween A and the table is 0.20. (b) Block C suddenly is lifted off A. What is the acceleration of block A if μkbetween A and the table is 0.15?

In Fig. 6-60, a block weighing22 Nis held at rest against a vertical wall by a horizontal force of magnitude 60 N .The coefficient of static friction between the wall and the block is 0.55 , and the coefficient of kinetic friction between them is 0.38 . In six experiments, a second force is applied to the block and directed parallel to the wall with these magnitudes and directions: (a) 34 N , up, (b) 12 N , up, (c) 48 N , up, (d) 62 N, up, (e) 10 N , down, and (f) 18 N, down. In each experiment, what is the magnitude of the frictional force on the block? In which does the block move (g) up the wall and (h) down the wall? (i) In which is the frictional force directed down the wall?

An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 5.0kN, and the circle’s radius is10m. At the top of the circle, what are the

(a) magnitudeand

(b) direction (up or down) of the force on the car from the boom if the car’s speed isv=5.0m/s?

What are (c)FBand

(d) the direction ifv=12m/s?

In Fig. 6-51, a crate slides down an inclined right-angled trough. The coefficient of kinetic friction between the crate and the trough isμk. What is the acceleration of the crate in terms of μk,θ, and g?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free