Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction 0.25 ofwith the floor. If the train is initially moving at a speed of 48 km/h, in how short a distance can the train be stopped at constant acceleration without causing the crates to slide over the floor?

Short Answer

Expert verified

The distance is 36.23 m

Step by step solution

01

Given

Coefficient of static friction,ฮผs=0.25

Initial speed of the train,v0=48km/h=13.33m/s

Final speed of the train,vf=0m/s

02

Determining the concept

The problem is based on Newtonโ€™s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. Use the Newton's 2nd law of motion to find the acceleration of the train and then by using the Kinematic equations of motion, find the distance travelled by train.

Formula:

โˆ‘Fnet=ma

03

Determining the distance

The frictional force acting on the train is given by,

fs=ฮผsN=ฮผsmg

By using Newton's 2nd law along the horizontal direction,

โˆ‘F=ma-fs=ma-ฮผsmg=maa=-ฮผsg

This is the acceleration of the train.

Now, by using the Kinematic equation of motion,

v2=v02+2ass=v2-v022a=-13.3322-0.259.81=36.23m

Therefore, the distance is 36.23 m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 6-27, a box of Cheerios (massmc=1.0kg)and a box of Wheaties(massmw=3.0kg)are accelerated across a horizontal surface by a horizontal force Fโ‡€applied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0N, and the magnitude of the frictional force on the Wheaties box is 4.0N. If the magnitude ofFโ‡€ is 12N, what is the magnitude of the force on the Wheaties box from the Cheerios box?

During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a20ยฐdive for a test of the aircraftโ€™s 20 mmmachine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds. Then, after allowing the cannons to cool, he shot another burst at 2000 m; his speed was then344 m/s, the speed of the rounds relative to him was 730 m/s, and he was still in a dive. Almost immediately the canopy around him was shredded and his right air intake was damaged. With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)

A child weighing 140Nsits at rest at the top of a playground slide that makes an angle of25ยฐwith the horizontal. The child keeps from sliding by holding onto the sides of the slide. After letting go of the sides, the child has a constant acceleration of0.86m/s2(down the slide, of course).

(a) What is the coefficient of kinetic friction between the child and the slide?

(b) What maximum and minimum values for the coefficient of static friction between the child and the slide are consistent with the information given here?

Continuation of Problem 8. Now assume that Eq. 6-14 gives the magnitude of the air drag force on the typical 20kgstone, which presents to the wind a vertical cross-sectional area of0.040m2and has a drag coefficient C of0.80. (a) In kilometers per hour, what wind speedValong the ground is needed to maintain the stoneโ€™s motion once it has started moving? Because winds along the ground are retarded by the ground, the wind speeds reported for storms are often measured at a height of10m. Assume wind speeds are2.00 times those along the ground. (b) For your answer to (a), what wind speed would be reported for the storm? (c) Is that value reasonable for a high-speed wind in a storm?

A 12Nhorizontal force Fโ‡€pushes a block weighing 5.0Nagainst a vertical wall (Fig. 6-26). The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free