Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each hand on one side and the fingers on the opposite side (Fig. 6-21). Sincosky’s mass was 79kg. If the coefficient of static friction between hand and rafter was 0.70, what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky’s grip was remarkable, try to repeat his stunt)

Short Answer

Expert verified

The least magnitude of the normal force on the rafter from each thumb or opposite fingers is2.8×102N

Step by step solution

01

Given

Mass,m=79kg

Coefficient of static friction,μs=0.70

02

Determining the concept

The problem is based on Newton’s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. According to Newton's 2nd law of motion, a force applied to an object at rest causes it to accelerate in the direction of the force.

Formula:

Fnet=ma

where, F is the net force, m is mass and a is an acceleration.

03

Determining the least magnitude of the normal force

The relation between frictional force and the normal force is,

fs=μsFN

2 thumbs and 2 hands of finger are in touch with the rafter. So, there are 4 surface which are responsible for the frictional force. So,

fs=4μsFN

Since, frictional force is in the opposite direction of the gravitational force and here rafter is not moving. So, the acceleration is zero. It gives,

fs=Fg=mgFN=fs4μs=mg4μsTherefore,=2.8×102N

Hence, the least magnitude of the normal force on the rafter from each thumb or opposite fingers is2.8×102N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 6-20 shows an initially stationary block of masson a floor. A force of magnitudeis then applied at upward angleθ=20°.What is the magnitude of the acceleration of the block across the floor if the friction coefficients are (a)μs=0.600andμk=0.500and (b)μs=0.400andμk=0.300?

An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 5.0kN, and the circle’s radius is10m. At the top of the circle, what are the

(a) magnitudeand

(b) direction (up or down) of the force on the car from the boom if the car’s speed isv=5.0m/s?

What are (c)FBand

(d) the direction ifv=12m/s?

A locomotive accelerates a 25-car train along a level track. Every car has a mass of 5.0×104kgand is subject to a frictional force f=250v, where the speed vis in meters per second and the force fis in newtons. At the instant when the speed of the train is 30km/h, the magnitude of its acceleration is 0.20 m/s2.

(a) What is the tension in the coupling between the first car and the locomotive? (b) If this tension is equal to the maximum force the locomotive can exert on the train, what is the steepest grade up which the locomotive can pull the train at 30 km/h?

A worker pushes horizontally on a 35kgcrate with a force of magnitude 110N. The coefficient of static friction between the crate and the floor is 0.37. (a) What is the value of fa,maxunder the circumstances? (b) Does the crate move? (c) What is the frictional force on the crate from the floor? (d) Suppose, next, that a second worker pulls directly upward on the crate to help out. What is the least vertical pull that will allow the first worker’s 110Npush to move the crate? (e) If, instead, the second worker pulls horizontally to help out, what is the least pull that will get the crate moving?

In Fig. 6-12, if the box is stationary and the angle θ between the horizontal and force Fis increased somewhat, do the following quantities increase, decrease, or remain the same: (a) Fx;(b) fs;(c) FN;(d) fs,max(e) If, instead, the box is sliding and θis increased, does the magnitude of the frictional force on the box increase, decrease, or remain the same?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free