Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A nucleus that captures a stray neutron must bring the neutron to a stop within the diameter of the nucleus by means of the strong force.That force, which “glues” the nucleus together, is approximately zero outside the nucleus. Suppose that a stray neutron with an initial speed of1.4×107m/sis just barely captured by a nucleus with diameterd=1.0×10-14m. Assuming the strong force on the neutron is constant, find the magnitude of that force. The neutron’s mass is1.67×10-27kg.

Short Answer

Expert verified

The magnitude of the force is 16 N.

Step by step solution

01

Given information

1)m=1.67×10-27kg

2)vi=1.4×107m/s

3)d=1×10-14m

02

Understanding the concept of Newton’s law

Newton’s law states that the product of mass and its acceleration is equal to the net force acting on the object.

Using the kinematic equations, we can find the acceleration of the object, as we know the initial velocity and stopping distance. From Newton’s law of motion, we can find the force acting on it.

Formula

Fnet=m×a

Here,Fnet is the force, is the mass of the object, and is the acceleration of the object.

03

Calculate the magnitude of that force

Use the kinematic equation to find the acceleration.

Vf2=vi2+2ad0=1.4×107m/s2+2a1×10-14ma=-1.4×107m/s221×10-14m=-9.8×1027m/s2

Therefore, the acceleration is -9.8×1027m/s2.

Use the formula from Newtons’ second law to calculate the net force,

Fnet=ma=1.67×10-27kg×9.8×1027m/s2=-16.366N

Therefore, the magnitude of the net force is 16 N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Figure 5-44, elevator cabs Aand Bare connected by a short cable and can be pulled upward or lowered by the cable above cab A. Cab Ahas mass 1700 kg; cab Bhas mass 1300 kg. A 12.0 kgbox of catnip lies on the floor of cab A. The tension in the cable connecting the cabs is1.91×104N4. What is the magnitude of the normal force on the box from the floor?

You pull a short refrigerator with a constant force Facross a greased (frictionless) floor, either withFhorizontal (case 1) or with tilted upward at an angleθ(case 2). (a)What is the ratio of the refrigerator’s speed in case 2 to its speed in case 1 if you pull for a certain time t? (b) What is this ratio if you pull for a certain distance d?

Figure 5.33 shows an arrangement in which four disks are suspended by cords. The longer, top cord loops over a frictionless pulley and pulls with a force of magnitude 98 N on the wall to which it is attached. The tensions in the three shorter cords areT1=58.8N,T2=49.0Nand T3=9.8N. (a) What is the mass of disk A (b) What is the mass of disk B, (c) What is the mass of disk C, and (d) What is the mass of disk D?

A customer sits in an amusement park ride in which the compartment is to be pulled downward in the negative direction of a yaxis with an acceleration magnitude of1.24g, withg=9.80m/s2. A 0.567gcoin rests on the customer’s knee. Once the motion begins and in unit-vector notation, (a) what is the coin’s acceleration relative to the ground and (b) what is the coin’s acceleration relative to the customer? (c) How long does the coin take to reach the compartment ceiling,2.20mabove the knee? In unit-vector notation, (d) what is the actual force on the coin and (e) what is the apparent force according to the customer’s measure of the coin’s acceleration?

Figure 5-62 is an overhead view of a12kg12tire that is to be pulled by three horizontal ropes. One rope’s force (F1=50N)is indicated. The forces from the other ropes are to be oriented such that the tire’s acceleration magnitude ais

least. What is that least if: (a)F2=30NF3=20N; (b) F2=30N,F3=10N; and

(c) F2=F3=30N?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free