Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A hot-air balloon of massis descending vertically with downward acceleration of magnitude a. How much mass (ballast) must be thrown out to give the balloon an upward acceleration of magnitude a? Assume that the upward force from the air (the lift) does not change because of the decrease in mass.

Short Answer

Expert verified

The mass must be thrown out of the hot-air balloon to give it an upward acceleration of magnitude a, that is,

m=2Maa+g

Step by step solution

01

Determining the concept

The problem is based on Newton’s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. Thus, using the free body diagram the mass that must be thrown out of the hot-air balloon to give it an upward acceleration of magnitude a can be found.

Formula:

It is given that,the mass of hot air balloon is M and the acceleration of the hot air balloon is –a, thus the Newton’s second law is,

Fnet=Ma (i)

02

Determining the Free Body Diagram (FBD)

Let mass m be thrown out of the hot air balloon.

FBD for the system before the mass is thrown from the balloon is,

Let, mass m be thrown out of the hot air balloon.

03

Determining the mass

Fa-M-mg=M-maFa=M-ma+M-mgFBD for the system after the mass is thrown from the balloon is,

From the first FBD and using notion in equation (i),

Mg-Fa=Ma (ii)

From the second FBD,

Fa-M-mg=M-maFa=M-ma+M-mg (iii)

Substituting equation (iii) in equation (ii),

Mg-(M-m)a-(M-m)g=MaMg-Ma+ma-Mg+mg=Mama+mg=Ma+Mam(a+g)=2Mam=2Maa+g

Therefore, the mass is m=2Maa+g , that must be thrown out of the hot-air balloon to give it an upward acceleration of magnitude a.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood’s machine.One block has massm1=1.30kg; the other has massm2=2.8kg. (a) What is the magnitude of the blocks’ acceleration and

(b) What is the tension in the cord?

A0.150 Kgparticle moves along an xaxis according to x(t)=-13.00+2.00t+4.00t2-3.00t3, with xin meters and tin seconds. In unit-vector notation, what is the net force acting on the particle at t= 3.40 s?

A customer sits in an amusement park ride in which the compartment is to be pulled downward in the negative direction of a yaxis with an acceleration magnitude of1.24g, withg=9.80m/s2. A 0.567gcoin rests on the customer’s knee. Once the motion begins and in unit-vector notation, (a) what is the coin’s acceleration relative to the ground and (b) what is the coin’s acceleration relative to the customer? (c) How long does the coin take to reach the compartment ceiling,2.20mabove the knee? In unit-vector notation, (d) what is the actual force on the coin and (e) what is the apparent force according to the customer’s measure of the coin’s acceleration?

Figure 5.33 shows an arrangement in which four disks are suspended by cords. The longer, top cord loops over a frictionless pulley and pulls with a force of magnitude 98 N on the wall to which it is attached. The tensions in the three shorter cords areT1=58.8N,T2=49.0Nand T3=9.8N. (a) What is the mass of disk A (b) What is the mass of disk B, (c) What is the mass of disk C, and (d) What is the mass of disk D?

Figure 5-39 shows an overhead view of a 0.0250kglemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force has a magnitude of 6.00 Nand is at . Force F1has a magnitude of 7.00 N and is at θ1=30.00 . In unit-vector notation, (a) what is the third force if the lemon half is stationary, (b) what is the third force if the lemon half has the constant velocity v =(13.0i^-14.0i)m/sand(c) what is the third force if the lemon half has the varying velocity v¯=(13.0i-14.0i)m/s where tis time?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free