Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 5-21, forcesF1andF2are applied to a lunchbox as it slides at constant velocity over a frictionless floor. We are to decrease angleθwithout changing the magnitude ofF1. For constant velocity, should we increase, decrease, or maintain the magnitude ofF2?

Short Answer

Expert verified

We should increase the magnitude in the angle on ForceF2 for constant velocity

Step by step solution

01

Given information

It is given that the object is moving with constant velocity, so the net force acting on it would be zero.

02

To understand the concept

The problem is based on Newton’s second law of motion. The law states that the acceleration of an object is dependent on the net force acting upon the object and the mass of the object. Also, it involves the resolution of vectors. Here, the forces can be resolved to find the net force. Net force can be found using Newton’s law of motion. By writing down the equation for the net force, the relationship between the forces and the angle can be found.

03

To find whether we should increase or decrease or maintain the magnitude in the angle on Force F2 for constant velocity

Here,we have to use Newton’s second law. As velocity is constant, the net force is

Fnet=0

So-net force is as follows,

role="math" localid="1657003263144" F2-F1cosθ=0F2=F1cosθF1=F2cosθ

Here we have to decrease role="math" localid="1657003321674" θby keeping the value of F1constant, so F2must be increased

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 5-60 shows a box of dirty money (mass m1=3.0kg) on a frictionless plane inclined at angle θ1=30°. The box is connected via a cord of negligible mass to a box of laundered money (mass m2=2.0kg) on a frictionless plane inclined at angle θ2=60°.The pulley is frictionless and has negligible mass. What is the tension in the cord?

A spaceship lifts off vertically from the Moon, whereg=1.6m/s2. If the ship has an upward acceleration of1.0m/s2as it lifts off, what is the magnitude of the force exerted by the ship on its pilot, who weighs 735 Non Earth?

An elevator cab that weighs 27.8KNmoves upward. (a) What is the tension in the cable if the cab’s speed is increasing at a rate of 1.22m/s2and (b) What is the tension in the cable if the cab’s speed is decreasing at a rate of 1.22m/s2?

July 17, 1981, Kansas City: The newly opened Hyatt Regency is packed with people listening and dancing to a band playing favorites from the 1940s. Many of the people are crowded onto the walkways that hang like bridges across the wide atrium. Suddenly two of the walkways collapse, falling onto the merrymakers on the main floor.

The walkways were suspended one above another on vertical rods and held in place by nuts threaded onto the rods. In the original design, only two long rods were to be used, each extending through all three walkways (Fig. 5-24a). If each walkway and the merrymakers on it have a combined mass of M, what is the total mass supported by the threads and two nuts on (a) the lowest walkway and (b) the highest walkway?

Apparently, someone responsible for the actual construction realized that threading nuts on a rod is impossible except at the ends, so the design was changed: Instead, six rods were used, each connecting two walkways (Fig. 5-24b). What now is the total mass supported by the threads and two nuts on (c) the lowest walkway, (d) the upper side of the highest walkway, and (e) the lower side of the highest walkway? It was this design that failed on that tragic

night—a simple engineering error.

A car that weighs 1.30×104N is initially moving at role="math" localid="1656996519190" 40km/h when the brakes are applied and the car is brought to a stop in role="math" localid="1656996543045" 15m. Assuming the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free