Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 5-64, a forceof magnitude 12Nis applied to a FedEx box of mass m2=1.0kg. The force is directed up a plane tilted by θ=37°. The box is connected by a cord to a UPS box of mass m1=3.0kgon the floor. The floor, plane, and pulley are friction less, and the masses of the pulley and cord are negligible. What is the tension in the cord?

Short Answer

Expert verified

Tension(T)is4.6N

Step by step solution

01

Given information

It is given that,

F=12N

m2=1.0kg

θ=37o

m1=3.0kg

02

Determining the concept

The problem is based on Newton’s second law of motion which states that the rate of change of momentum of a body is equal in both magnitude and direction of the force acting on it. Thus, using the free body diagramdifferent forces acting on the objects can be found. Further, using Newton's second law of motion, the acceleration and tension in the cord can be computed.

Formula:

According to the Newton’s second law of motion,

Fnet=Ma

03

Determining the tension in the cord

Free Body Diagram:

F-T-m2gsinθ=m2aT=m1a

By solving above two equations,

a=F-m2gsinθm1+m2a=12-1×9.8×sin37°3+1a=1.53m/s2

Now, tension is given by,

T=m1aT=3×1.53T=4.6N

Hence, tension is4.6N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A lamp hangs vertically from a cord in a descending elevator that decelerates at 2.4m/s2. (a) If the tension in the cord is 89N, what is the lamp’s mass? (b) What is the cord’s tension when the elevator ascends with an upward acceleration of2.4m/s2?

A block of massMis pulled along a horizontal friction less surface by a rope of massm, as shown in Fig. 5-63. A horizontal forceFacts on one end of the rope.(a) Show that the rope must sag, even if only by an imperceptible amount. Then, assuming that the sag is negligible, find (b) the acceleration of rope and block, (c) the force on the block from the rope, and (d) the tension in the rope at its midpoint.

A car that weighs 1.30×104N is initially moving at role="math" localid="1656996519190" 40km/h when the brakes are applied and the car is brought to a stop in role="math" localid="1656996543045" 15m. Assuming the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)

An 85 kgman lowers himself to the ground from a height of 10.0 mby holding onto a rope that runs over a frictionless pulley to a 65 kgsandbag. With what speed does the man hit the ground if he started from rest?

A vertical forceF is applied to a block of mass m that lies on a floor. What happens to the magnitude of the normal forceFN on the block from the floor as magnitudeF is increased from zero if force is (a) downward and (b) upward?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free