Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An object hangs from a spring balance. The balance registersin air,when this object is immersed in water and 24 N when the object is immersed in another liquid of unknown density. What is the density of that other liquid?

Short Answer

Expert verified

The density of the unknown liquid is6×102kg/m3.

Step by step solution

01

Listing the given quantities

  • Weight in air =30N.
  • Weight in water =20N.
  • Weight in the unknown liquid =24N.
02

Understanding the concept of buoyant force

By using the relation between apparent weight, actual weight, and force of buoyancy we find the density of the unknown liquid.

Formula:

Fb=Mfg

=ρfVg

Whereρfis the density of fluid, V is the volume, and g is the acceleration due to gravity.

Wapp=WAct-Fb

03

(a) Calculation of density of the unknown liquid

The weight in air of an object is its actual weight,Wact=30N

For the weight of an object when it is immersed in water, we can write

Wapp=WAct-Fb

20=30-ρwVg

Vg=10ρw (1)

Applying the formula 2 to the object when it is immersed in an unknown liquid

Wapp=WAct-Fb

24N=30N-ρuVg

ρu=6NVg

Using equation (1) and rearranging

ρu=6N×ρw10

=6N×1×10310

=6.0×102kg/m3

The density of the unknown liquid is 6×102kg/m3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are0.50L, 2.6 g/cm3; 0.25 L, 1.0 g/cm3; and0.40 L, 0.80 g/cm3 . What is the force on the bottom of the container due to these liquids? One liter , 1L=1000 cm3. (Ignore the contribution due to the atmosphere.)

In Figure, a spring of spring constant 3.00×104N/mis between a rigid beam and the output piston of a hydraulic lever. An empty container with negligible mass sits on the input piston. The input piston has area A1, and the output piston has area 18.0A1. Initially the spring is at its rest length. How many kilograms of sand must be (slowly) poured into the container to compress the spring by 5.00cm?

In Figure, the fresh water behind a reservoir dam has depth D=15m. A horizontal pipe 4.0cmin diameter passes through the dam at depth d=6.0m. A plug secures the pipe opening.

(a) Find the magnitude of the frictional force between plug and pipe wall.

(b) The plug is removed. What water volume exits the pipe in 3.0h?

In one observation, the column in a mercury barometer (as is shown in Figure) has a measured heighth of 740.35mm. The temperature is5.0°C, at which temperature the density of mercury role="math" localid="1657193277146" ρis 1.3608×104kg/m3. The free-fall acceleration g at the site of the barometer is 9.7835m/s2. What is the atmospheric pressure at that site in Pascal and in torr (which is the common unit for barometer readings)?

The intake in Figure has cross-sectional area of 0.74m2and water flow at 0.40ms. At the outlet, distance D=180mbelow the intake, the cross-sectional area is smaller than at the intake, and the water flows out at 9.5ms into the equipment. What is the pressure difference between inlet and outlet?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free