Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A piston of cross-sectional area a is used in a hydraulic press to exert a small force of magnitude f on the enclosed liquid. A connecting pipe leads to a larger piston of cross-sectional area A (Figure). (a) What force magnitude F will the larger piston sustain without moving? (b) If the piston diameters are 3.80cmand 5.30cm, what force magnitude on the small piston will balance a 20.0kN force on the large piston ?

Short Answer

Expert verified

a) The force that the larger piston will sustain without moving isAaf

b) Magnitude of force is103N

Step by step solution

01

The given data

(i) Diameter of small piston,d=3.8cmor0.038m

(ii) Diameter of large piston,D=53cmor0.53m

(iii) Force on larger piston,F=20×103N

02

Understanding the concept of Pascal’s law

We can use Pascal’s law, which states that the change in the pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and the wall of the container. In other words, we can say that the ratio of force to the area across the container would remain constant.

Formula:

Relation of pressure of larger and smaller piston using Pascal’s law,

FA=fa (i)

Where,

Fand Aare the force and area of larger piston respectively; fandaare the force and area of the smaller piston respectively.

03

a) Calculation of force that will larger piston sustain

Using equation (i) and the given values, we get

F=Aaf

Hence, the equation of force that will define the force of larger piston isF=Aaf

04

b) Calculation of magnitude of force

Using equation (i) and the given values, we get the force on smaller piston as:

F=Aaf

=0.03820.53220×103

=103N

Hence, the force required by smaller piston to balance the large piston is 103N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 14-21 shows four situations in which a red liquid and a gray liquid are in a U-tube. In one situation the liquids cannot be in static equilibrium. (a) Which situation is that? (b) For the other three situations, assume static equilibrium. For each of them, is the density of the red liquid greater than, less than, or equal to the density of the gray liquid?

A large aquarium of height 5.00 mis filled with fresh water to a depth of 2.00 m. One wall of the aquarium consists of thick plastic 8.00 mwide.

By how much does the total force on that wall increase if the aquarium is next filled to a depth of 4.00 m?

In analyzing certain geological features, it is often appropriate to assume that the pressure at some horizontal level of compensation, deep inside Earth, is the same over a large region and is equal to the pressure due to the gravitational force on the overlying material. Thus, the pressure on the level of compensation is given by the fluid pressure formula. This model requires, for one thing, that mountains have roots of continental rock extending into the denser mantle (Figure). Consider a mountain of heightH=6.0kmkm on a continent of thickness T=32km. The continental rock has a density of2.9g/cm3 , and beneath this rock the mantle has a density of 3.3g/cm3. Calculate the depth of the root. (Hint: Set the pressure at points a and b equal; the depth y of the level of compensation will cancel out.)

A partially evacuated airtight container has a tight-fitting lid of surface area77m2and negligible mass. If the force required removing the lid is 480 N and the atmospheric pressure is1.0×105Pa, what is the internal air pressure?

A cylindrical tank with a large diameter is filled with water to a depthD=0.30m. A hole of cross-sectional areaA=6.5cm2 in the bottom of the tank allows water to drain out.

(a) What is the rate at which water flows out, in cubic meters per second?

(b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free