Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 12-85ashows details of a finger in the crimp holdof the climber in Fig. 12-50. A tendon that runs from muscles inthe forearm is attached to the far bone in the finger. Along the way, the tendon runs through several guiding sheaths called pulleys. The A2 pulley is attached to the first finger bone; the A4 pulley is attached to the second finger bone. To pull the finger toward the palm, the forearm muscles pull the tendon through the pulleys, much like strings on a marionette can be pulled to move parts of the marionette. Figure 12-85bis a simplified diagram of the second finger bone, which has length d. The tendon’s pull Fton the bone acts at the point where the tendon enters the A4 pulley, at distance d/3 along the bone. If the force components on each of the four crimped fingers in Fig. 12-50 are Fh=13.4 Nand Fv=162.4 N, what is the magnitude ofFt ? The result is probably tolerable, but if the climber hangs by only one or two fingers, the A2 and A4 pulleys can be ruptured, a common ailment among rock climbers.

Short Answer

Expert verified

The magnitude of the force Ft isFt=175.6 N .

Step by step solution

01

Understanding the given information

Fv=162.4 NFh=13.4 N

02

Concept and formula used in the given question

Using the equation for the equilibrium of torque, you can find the magnitude of the tension force. The equation is given below.

τnet=0

03

Calculation of the magnitude of  Ft→ 

Let us consider the given figure of the free body diagram,

Let us assume the pivot point at point A. The equation for the equilibrium of torque can be written as,

Ftsin45°×d3Fvsin10°×dFhsin80°×d=0

Now, solving for Ftwe get,

Ft=3×(Fvsin10°+Fhsin80°)sin45°

Now, by using the values,

Fv=162.4 N and Fh=13.4 N

You get,

Ft=175.6 N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three piñatas hang from the (stationary) assembly of massless pulleys and cords seen in Fig. 12-21. One long cord runs from the ceiling at the right to the lower pulley at the left, looping halfway around all the pulleys. Several shorter cords suspend pulleys from the ceiling or piñatas from the pulleys. The weights (in newtons) of two piñatas are given.

(a) What is the weight of the third piñata? (Hint:A cord that loops halfway around a pulley pulls on the pulley with a net force that is twice the tension in the cord.)

(b) What is the tension in the short cord labeled with T?

Figure 12-62 is an overhead view of a rigid rod that turns about a vertical axle until the identical rubber stoppersAand Bare forced against rigid walls at distancesrA=7.0cmandrB=4.0cmfrom the axle. Initially the stoppers touch the walls without being compressed. Then forceFof magnitude 220Nis applied perpendicular to the rod at a distance R=5.0cmfrom the axle. Find the magnitude of the force compressing (a) stopperA, and (b) stopper.B

In Fig. 12-45, a thin horizontal bar ABof negligible weight and length Lis hinged to a vertical wall at Aand supported at B by a thin wire BCthat makes an angleθ with the horizontal. A block of weight Wcan be moved anywhere along the bar; its position is defined by the distance xfrom the wall to its center of mass. As a function of x, find(a) the tension in the wire, and the (b) horizontal and (c) vertical components of the force on the bar from the hinge at A.

A ladder leans against a frictionless wall but is prevented from falling because of friction between it and the ground. Suppose you shift the base of the ladder toward the wall. Determine whether the following become larger, smaller, or stay the same (inmagnitude):

(a) the normal force on the ladder from the ground,

(b) the force on the ladder from the wall,

(c) the static frictional force on the ladder from the ground, and

(d) the maximum value Fs,max of the static frictional force.

A door has a height of 2.1 m along a yaxis that extends vertically upward and a width of 0.91 malong an xaxis that extends outward from the hinged edge of the door. A hinge 0.30 m from the top and a hinge 0.30 m from the bottom each support half the door’s mass, which is27 kg . In unit-vector notation, (a) what is the forces on the door at the top hinge and (b) what is the forces on the door at the bottom hinge?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free