Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A makeshift swing is constructed by making a loop in one end of a rope and tying the other end to a tree limb. A child is sitting in the loop with the rope hanging vertically when the child’s father pulls on the child with a horizontal force and displaces the child to one side. Just before the child is released from rest, the rope makes an angle of 15°with the vertical and the tension in the rope is 280 N .

(a) How much does the child weigh?

(b) What is the magnitude of the (horizontal) force of the father on the child just before the child is released?

(c) If the maximum horizontal force the father can exert on the child is 93N , what is the maximum angle with the vertical the rope can make while the father is pulling horizontally?

Short Answer

Expert verified
  1. The weight of the child,W=270.46 N.
  2. The magnitude of the (horizontal) force of the father on the child,F=72.47 N.
  3. The maximum angle with the vertical the rope can make, θ=18.98°.

Step by step solution

01

Understanding the given information

The tension in the cord is280 N.

The angle made by the rope to the vertical,θ=15°.

The maximum horizontal force, Fmax=93 N.

02

Concept and formula used in the given question

Using the equation for the equilibrium of force, you can find out the weight of the child, the horizontal force the father applied to the child, and the maximum angle made by the rope. The equations are given below.

W=Tcos(15°)F=Tsin(15°)

03

(a) Calculation of the much the child weighs

The force equation for the child can be written as,

W=Tcos(15°)

And

F=Tsin(15°)

We have, the force equation for weight as,

W=Tcos(15°)

By using the value of T=280 N,

we get,

W=270.46 N

04

(b) Calculation for the magnitude of the (horizontal) force of the father on the child just before the child is released

We have, the force equation for the horizontal force

F=Tsin(15°)

So, we get

F=72.47 N

05

(c) Calculation for the maximum  angle with the vertical the rope can make while the father is pulling horizontally

We have the force equation for horizontal force as

F=Tsinθ

In the vertical direction, we have, the weight of the child,

W=270.46 N

By rearranging this equation for angle, we get

θ=FmaxWθ=18.98°

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A tunnel of length L=150 m, height H=7.2 m, and width 5.8 m (with a flat roof) is to be constructed at distance d=60 m beneath the ground. (See the Figure.) The tunnel roof is to be supported entirely by square steel columns, each with a cross-sectional area of 960 cm2. The mass of 1.0 cm3 of the ground material is 2.8 g. (a) What is the total weight of the ground material the columns must support? (b) How many columns are needed to keep the compressive stress on each column at one-half its ultimate strength?

Figure 12-62 is an overhead view of a rigid rod that turns about a vertical axle until the identical rubber stoppersAand Bare forced against rigid walls at distancesrA=7.0cmandrB=4.0cmfrom the axle. Initially the stoppers touch the walls without being compressed. Then forceFof magnitude 220Nis applied perpendicular to the rod at a distance R=5.0cmfrom the axle. Find the magnitude of the force compressing (a) stopperA, and (b) stopper.B

Question: A bowler holds a bowling ball (M = 7.2 Kg) in the palm of his hand (Figure 12-37). His upper arm is vertical; his lower arm (1.8 kg) is horizontal. What is the magnitude of (a) the force of the biceps muscle on the lower arm and (b) the force between the bony structures at the elbow contact point?

Question: In Fig 12-30, trying to get his car out of mud, a man ties one end of a rope around the front bumper and the other end tightly around a utility pole 18 maway. He then pushes sideways on the rope at its midpoint with a force of 550 N , displacing the center of the rope 0.30 m, but the car barely moves. What is the magnitude of the force on the car from the rope? (The rope stretches somewhat.)

Question: Because gvaries so little over the extent of most structures, any structure’s center of gravity effectively coincides with its center of mass. Here is a fictitious example where gvaries more significantly. Figure 12-25 shows an array of six particles, each with mass m, fixed to the edge of a rigid structure of negligible mass. The distance between adjacent particles along the edge is 2.00 m. The following table gives the value of g (m/s2)at each particle’s location. Using the coordinate system shown, find (a) the xcoordinate xcom and (b) the ycoordinate Ycom of the center of mass of the six-particle system. Then find (c) the xcoordinate xcog and (d) the ycoordinateYcogof the center of gravity of the six-particle system.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free