Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 12-84 shows a stationary arrangement of two crayon boxes and three cords. Box Ahas a mass of11.0 kg and is on a ramp at angle θ=30.box Bhas a mass of7.00 kg and hangs on a cord. The cord connected to box Ais parallel to the ramp, which is frictionless. (a) What is the tension in the upper cord, and (b) what angle does that cord make with the horizontal?

Short Answer

Expert verified
  1. Tension in the upper cord is106 N.
  2. Angle made by upper cord with the horizontal is 64.0°.

Step by step solution

01

Understanding the given information

Mass of box A,mA=11.0 kg

Mass of box B,mB=7.00 kg

Angle made by ramp to the horizontal,θ=30°

02

Concept and formula used in the given question

Using the concept of equilibrium of forces, you can find the tension in the upper cord and the angle made by that cord with the horizontal. The equations used are given below.

Tcosθ=TAcos30°Tsinθ=TA×sin(30°)+TB

03

(a) Calculation for the tension in the upper cord

We have,for the equilibrium of forces,

Tcosθ'=TAcos30°Tcosθ'=mA×g×sin(30°)×cos(30°)           (1)

Also,

Tsinθ'=TA×sin(30°)+TBTsinθ'=mA×g×sin(30°)×sin(30°)+mB×g              (2)

Now, solving eq. (1) and (2), for tension we get

T=106 N

04

(b) Calculation for the angle does that cord make with the horizontal

Solving the above eq. (1) and eq. (2), for angle we get

θ'=64.0°

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Figure 12-55 shows the stress–strain curve for a material. The scale of the stress axis is set by,s = 300 in units of106N/m2. (a) What is the Young’s modulus? And (b) What is the approximate yield strength for this material?

Figure:

Question: In Fig.12-32, a horizontal scaffold, of length 2.00 m and uniform mass 50 kg , is suspended from a building by two cables. The scaffold has dozens of paint cans stacked on it at various points. The total mass of the paint cans is 75 kg . The tension in the cable at the right is 722 N . How far horizontally from thatcable is the center of mass of the system of paint cans?

In Fig. 12-16, a rigid beam is attached to two posts that are fastened to a floor. A small but heavy safe is placed at the six positions indicated, in turn. Assume that the mass of the beam is negligible compared to that of the safe.

(a) Rank the positions according to the force on post Adue to the safe, greatest compression first, greatest tension last, and indicate where, if anywhere, the force is zero.

(b) Rank them according to the force on post B.

Question: In Fig.12-35, horizontal scaffold 2, with uniform mass m2 =30.0 kg and length L2 =2.00 m, hangs from horizontal scaffold 1, with uniform mass m1 = 50 kg . A 20 kgbox of nails lies on scaffold 2, centered at distance d = 0.500 mfrom the left end. What is the tension Tin the cable indicated?

In Fig. 12-67a, a uniform40.0kgbeam is centered over two rollers. Vertical lines across the beam mark off equal lengths. Two of the lines are centered over the rollers; a 10.0kgpackage of tamales is centered over roller B.What are the magnitudes of the forces on the beam from (a) roller Aand (b) roller B? The beamis then rolled to the left until the right-hand end is centered over roller B(Fig. 12-67b).What now are the magnitudes of the forces on the beam from (c) roller Aand (d) roller B? Next, the beam is rolled to the right. Assume that it has a length of 0.800 m. (e) what horizontal distance between the package and roller Bputs the beam on the verge of losing contact with rollerA?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free