Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A beam of length Lis carried by three men, one man at one end and the other two supporting the beam between them on a crosspiece placed so that the load of the beam is equally divided among the three men. How far from the beam’s free end is the crosspiece placed? (Neglect the mass of the crosspiece.)

Short Answer

Expert verified

The distance of the crosspiece from the free end of the beam is, d=L4.

Step by step solution

01

Understanding the given information

The length of a beam is L.

The load of the beam is equally divided by three men.

02

Concept and formula used in the given question

Using the equation for the equilibrium of force and the equation of equilibrium of torque, you can solve for the distance of a crosspiece. The equations are given below.

At equilibrium,Fnet=0

At equilibrium,τnet=0

03

Calculation of how far from the beam’s free end is the crosspiece placed

You have given that the load of the beam is equally divided by three men.

Suppose, one man is applying upward force F.

At equilibrium,

Fnet=0

So,

role="math" localid="1661360361518" W=3×F                                   (1)

Where W is the weight of the beam.

Now, let us consider the pivot point, at the man of one end. Then the equation of equilibrium of torque can be written as,

At equilibrium,

τnet=0

So,

W×L22F×x=0

Solving this equation for the distance of the crosspiece from the man at one end, you will get,

x=W×L2×2F

Now, substituting eq. (1)

x=34L

So, the distance of the crosspiece from the free end is,

d=Lxd=L4

Thus, the distance of the crosspiece from the free end of the beam is, d=L4.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 12-81 shows a 300 kg cylinder that is horizontal. Three steel wires support the cylinder from a ceiling. Wires 1 and 3 are attached at the ends of the cylinder, and wire 2 is attached at the center. The wires each have a cross-sectional area of2.00×106m2 . Initially (before the cylinder was put in place) wires 1 and 3 were2.0000 m2 long and wire 2 was 6.00 mmlonger than that. Now (with the cylinder in place) all three wires have been stretched. What is the tension in (a) wire 1 and (b) wire 2?

Question: Because gvaries so little over the extent of most structures, any structure’s center of gravity effectively coincides with its center of mass. Here is a fictitious example where gvaries more significantly. Figure 12-25 shows an array of six particles, each with mass m, fixed to the edge of a rigid structure of negligible mass. The distance between adjacent particles along the edge is 2.00 m. The following table gives the value of g (m/s2)at each particle’s location. Using the coordinate system shown, find (a) the xcoordinate xcom and (b) the ycoordinate Ycom of the center of mass of the six-particle system. Then find (c) the xcoordinate xcog and (d) the ycoordinateYcogof the center of gravity of the six-particle system.

Four bricks of length L , identical and uniform, are stacked on a table in two ways, as shown in Fig. 12-83 (compare with Problem 63). We seek to maximize the overhang distance h in both arrangements. Find the optimum distancesa1 ,a2 ,b1 , andb2 , and calculate hfor the two arrangements.

A pan balance is made up of a rigid, massless rod with a hanging pan attached at each end. The rod is supported at and free to rotate about a point not at its center. It is balanced by unequal masses placed in the two pans. When an unknown mass mis placed in the left pan, it is balanced by a mass m1 placed in the right pan; when the mass mis placed in the right pan, it is balanced by a mass m2in the left pan. Show thatm=m1m2

In Fig. 12-82, a uniform beam of length 12.0 m is supported by a horizontal cable and a hinge at angle θ=50.0°. The tension in the cable is 400 N .

In unit-vector notation, what are

(a) the gravitational force on the beam and

(b) the force on the beam from the hinge?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free