Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cylindrical aluminum rod, with an initial length of 0.8000 m and radius1000.0 μm , is clamped in place at one end and then stretched by a machine pulling parallel to its length at its other end. Assuming that the rod’s density (mass per unit volume) does not change, find the force magnitude that is required of the machine to decrease the radius to999.9 μm . (The yield strength is not exceeded.)

Short Answer

Expert verified

The magnitude of force applied on the cylindrical rod by machine is 44N.

Step by step solution

01

Understanding the given information

The initial length of the rod,L=0.8000 m

The initial radius of the rod,r=1000.0 μm106 m1 μm=1000.0×106m

The final radius of the rod, =999.9 μm106 m1 μm=999.9×106 m

02

Concept and formula used in the given question

You can use the concept of modulus of elasticity, and expression of density and volume of the rod. The formulas used are given below.

ρ=MVV=πr2hFA=EΔLL

03

Calculation for the force magnitude that is required of the machine to decrease the radius to  999.9 mm

One end of the rod is clamped and the other end is stretched by the machine in such a way that the rod’s density remains the same after elongation of the rod.

The expression of the density of the rod is

ρ=MVV=Mρ=constantV=πr2L=constant

The expression of the volume of the rod before and after elongation is:

πr2L=πr'2L'r2L=r'2L'L'=r2Lr'2

Change in length of the rod due to the applied force by the machine is:

ΔL=L'L=r2Lr'2L=Lr2r'21

The expression of Young’s modulus of elasticity is:

FA=EΔLLF=AEΔLLF=πr2ELr2r'21LF=3.14×(1000×106m)2×70×109 N/m2×(1000×106m)2(999.9×106m)21F=44 N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 12-68, an 817 kg construction bucket is suspended by a cable Athat is attached at O to two other cables Band C, making anglesθ1=51.0°andθ2=66.0°with the horizontal. Find the tensions in (a) cable A, (b) cable B, and (c) cable C. (Hint:To avoid solving two equations in two unknowns, position the axes as shown in the figure.)

The force F in Fig. 12-70 keeps the 6.40 kg block and the pulleys in equilibrium. The pulleys have negligible mass and friction. Calculate the tension Tin the upper cable. (Hint:When a cable wraps halfway around a pulley as here, the magnitude of its net force on the pulley is twice the tension in the cable.)

A tunnel of length L=150 m, height H=7.2 m, and width 5.8 m (with a flat roof) is to be constructed at distance d=60 m beneath the ground. (See the Figure.) The tunnel roof is to be supported entirely by square steel columns, each with a cross-sectional area of 960 cm2. The mass of 1.0 cm3 of the ground material is 2.8 g. (a) What is the total weight of the ground material the columns must support? (b) How many columns are needed to keep the compressive stress on each column at one-half its ultimate strength?

In Fig. 12-42, what magnitude of (constant) forcefapplied horizontally at the axle of the wheelis necessary to raise the wheel over a step obstacle of heighth=3.00cm ? The wheel’s radius is r=6.00cm,and its mass is m=0.800kg.

Question: A uniform cubical crate is 0.750 m on each side and weighs 500 N . It rests on a floor with one edge against a very small, fixed obstruction. At what least height above the floor must a horizontal force of magnitude 350 N be applied to the crate to tip it?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free