Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The force F in Fig. 12-70 keeps the 6.40 kg block and the pulleys in equilibrium. The pulleys have negligible mass and friction. Calculate the tension Tin the upper cable. (Hint:When a cable wraps halfway around a pulley as here, the magnitude of its net force on the pulley is twice the tension in the cable.)

Short Answer

Expert verified

Tension T in the upper cable is 71.68 N.

Step by step solution

01

Understanding the given information

Mass of the block, m=6.40 kg

02

Concept and formula used in the given question

Using the equilibrium conditions, you can write the equations for force for the lowest pulley and find the tension in terms of applied force. You can do it for the remaining two pulleys and find the tension in the string holding the topmost pulley. The formula used is given below.

Fnet=0

03

Calculation for the tension T in the upper cable

From the figure, we can conclude that

T1=FT2=F+T1T2=2FT3=2F+T2T3=4FT=4F+T3T=8F

In addition, we know the value of force,F=62.72 N

We can write,

T1+T2+T3=mg7F=mgF=mg7F=62.72N7F=8.96 N

We already found that,

T=8F

So,

T=(8.96N)(8)=71.68 N

Thus, the tension in the upper cable is 71.68 N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A ladder leans against a frictionless wall but is prevented from falling because of friction between it and the ground. Suppose you shift the base of the ladder toward the wall. Determine whether the following become larger, smaller, or stay the same (inmagnitude):

(a) the normal force on the ladder from the ground,

(b) the force on the ladder from the wall,

(c) the static frictional force on the ladder from the ground, and

(d) the maximum value Fs,max of the static frictional force.

In Fig. 12-72, two identical, uniform, and frictionless spheres, each of mass m, rest in a rigid rectangular container. A line connecting their centers is at45°to the horizontal. Find the magnitudes of the forces on the spheres from (a) the bottom of the container, (b) the left side of the container, (c) the right side of the container, and (d) each other. (Hint:The force of one sphere on the other is directed along the center–center line.)

Figure 12-59 shows the stress versus strain plot for an aluminum wire that is stretched by a machine pulling in opposite directions at the two ends of the wire. The scale of the stress axis is set by s=7.0, in units of107N/m2. The wire has an initial length of0.800mand an initial cross-sectional area of2.00×106m2. How much work does the force from the machine do on the wire to produce a strain of1.00×103?

Figure:

Figure (a) shows a horizontal uniform beam of massmband lengthLthat is supported on the left by a hinge attached to a wall and on theright by a cable at angle θ with the horizontal. A package of mass mp is positioned on the beam at a distance x from the left end. The total mass ismb+mp=61.22kg. Figure (b) gives the tension T in the cable as a function of the package’s position given as a fraction x/L of the beam length. The scale of the T axis is set by Ta=500N and Tb=700N.

(a) Evaluate angleθ ,

(b) Evaluate massmb , and

(c) Evaluate mass mp.

A cubical box is filled with sand and weighs 890N. We wish to “roll” the box by pushing horizontally on one of the upper edges. (a) What minimum force is required? (b) What minimum coefficient of static friction between box and floor is required? (c) If there is a more efficient way to roll the box, find the smallest possible force that would have to be applied directly to the box to roll it. (Hint:At the onset of tipping, where is the normal force located?)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free