Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 12-64, block A (mass10kg)is in equilibrium, but itwould slip if block B (mass5.0kg)were any heavier. For angle θ=30°what is the coefficient of static friction between block Aand the surfacebelow it?

Short Answer

Expert verified

The coefficient of static friction between block A and the surface is0.288

Step by step solution

01

Listing the given quantities

mA=10kg

mB=5kg

θ=30°

02

Understanding the concept of coefficient of static friction

By drawing the free body diagram of the situation, we can find the tension in each wire employing which they are connected. Using the conditions for equilibrium, we can find the coefficient of static friction.

Formula:

Fy=0

Fx=0

Fstaticfriction=μs×NormalForce

03

Free body diagram block A

From this, we can say that,

T1=Fs

T1=μs×FN

T1=μs×(mA×g)

T1=μs×(10 kg×9.8 m/s2)

T1=98 N×μs

04

Free body diagram block B

From this, we can say that,

T2=mB×g

T2=5kg×9.8m/s2T2=49N

05

Free body diagram for equilibrium position

06

Calculations of static friction

From this, we can say that,

Fy=0(T3×cosθ)-T2=0(T3×cosθ)=T2(T3×cosθ)=49N

Fx=0(T3×sinθ)-T1=0(T3×sinθ)=T1(T3×sinθ)=98 N×μs

(T3×sinθ)(T3×cosθ)=98N×μs49Nμs=tanθ×0.5μs=0.5×tan(30°)μs=0.5×0.577μs=0.288

The coefficient of static friction between block A and the surface is0.288

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 12-22, a vertical rod is hinged at its lower end and attached to a cable at its upper end. A horizontal forceFais to be applied to the rod as shown. If the point at which then force is applied is moved up the rod, does the tension in the cable increase, decrease, or remain the same?

In Fig. 12-47, a nonuniform bar is suspended at rest in a horizontal position by two massless cords. One cord makes the angleθ=36.9°with the vertical; the other makes the angleϕ=53.1°with the vertical. If the lengthLof the bar is6.10m, compute the distancexfrom the left end of the bar to its center of mass.

Question: Because gvaries so little over the extent of most structures, any structure’s center of gravity effectively coincides with its center of mass. Here is a fictitious example where gvaries more significantly. Figure 12-25 shows an array of six particles, each with mass m, fixed to the edge of a rigid structure of negligible mass. The distance between adjacent particles along the edge is 2.00 m. The following table gives the value of g (m/s2)at each particle’s location. Using the coordinate system shown, find (a) the xcoordinate xcom and (b) the ycoordinate Ycom of the center of mass of the six-particle system. Then find (c) the xcoordinate xcog and (d) the ycoordinateYcogof the center of gravity of the six-particle system.

Figure 12-65ashows a uniform ramp between two buildings that allows for motion between the buildings due to strong winds.At its left end, it is hinged to the building wall; at its right end, it has a roller that can roll along the building wall. There is no vertical force on the roller from the building, only a horizontal force with magnitude Fh. The horizontal distance between the buildings is D=4.00m. The rise of the ramp isD=4.00m. A man walks across the ramp from the left. Figure 12-65bgives Fhas a function of the horizontal distance xof the man from the building at the left. The scale of the Fhaxis is set by a= 20kN and b=25kN. What are the masses of (a) the ramp and (b) the man?

In Fig. 12-39, arock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width W = 0.20 m,and the center of mass of the climber is a horizontal distance d = 0.40 mfrom the fissure. The coefficient of static friction betweenhands and rock is,μ1=0.40and between boots and rock it isμ2=1.2. (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) For the horizontal pull of (a), what must be the vertical distance h between hands and feet? If the climber encounters wet rock, so thatμ1andμ2are reduced, what happens to (c) the answer to (a) and (d) the answer to (b)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free