Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Fig.12-34, a uniform beam of weight 500 Nand length 3.00 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance Dabove the beam. The least tension that will snap the cable is 1200 N. (a) What value of D corresponds to that tension? (b) To prevent the cable from snapping, should Dbe increased or decreased from that value?

Short Answer

Expert verified

Answer:

a. D = 0.64 m

b. Value of D should be increased to prevent the cable from snapping.

Step by step solution

01

Understanding the given information

W=500NL=3.0mT=1200N

02

Concept and formula used in the given question 

Using the concept of static equilibrium, you can write the equation for torque in terms of forces and their distances from the pivot point. Solving these equations, you can find the unknown distance. The formula used is given below.

Static Equilibrium conditions:

Fx=0Fy=0τ=0

03

(a) Calculation for the value of D corresponds to that tension 

Applying equilibrium condition for torque:

τ=0T×L×cosθ-Mg×L2=0(1200×3×cosθ)-500×1.5=0θ=780

From triangle geometry:

tanθ=LDtan780=3DD=0.64m

Hence, D 0.64 m

04

(b) Calculation to prevent the cable from snapping, should D be increased or decreased from that value 

Increasing the distance d would increase the angle. The higher the angle, the smaller the tension would be. This is as the weight of the beam would be supported by the vertical component of the tension which isTsinθ . Hence to prevent the cable from snapping, we have to increase the distance D.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Because gvaries so little over the extent of most structures, any structure’s center of gravity effectively coincides with its center of mass. Here is a fictitious example where gvaries more significantly. Figure 12-25 shows an array of six particles, each with mass m, fixed to the edge of a rigid structure of negligible mass. The distance between adjacent particles along the edge is 2.00 m. The following table gives the value of g (m/s2)at each particle’s location. Using the coordinate system shown, find (a) the xcoordinate xcom and (b) the ycoordinate Ycom of the center of mass of the six-particle system. Then find (c) the xcoordinate xcog and (d) the ycoordinateYcogof the center of gravity of the six-particle system.

In Fig. 12-73, a uniform beam with a weight of 60 Nand a length of 3.2 m is hinged at its lower end, and a horizontal force of magnitude 50 N acts at its upper end. The beam is held vertical by a cable that makes angle θ=25°with the ground and is attached to the beam at height h=2.0 m . What are (a) the tension in the cable and (b) the force on the beam from the hinge in unit-vector notation?

In Fig. 12-42, what magnitude of (constant) forcefapplied horizontally at the axle of the wheelis necessary to raise the wheel over a step obstacle of heighth=3.00cm ? The wheel’s radius is r=6.00cm,and its mass is m=0.800kg.

For the stepladder shown in the Figure, sidesACand CE are each 2.44m long and hinged at . Bar is a tie-rod 0.762mlong, halfway up. A man weighing 854Nclimbs 1.80m along the ladder. Assuming that the floor is frictionless and neglecting the mass of the ladder.Find

(a)the tension in the tie-rod and the magnitudes of the forces on the ladder from the floor at

(b) Aand

(c) E . (Hint: Isolate parts of the ladder in applying the equilibrium conditions.)

Figure:

Question: To crack a certain nut in a nutcracker, forces with magnitudes of at least 40 N must act on its shell from both sides. For the nutcracker of Figure, with distances L =12 cmand D = 2.6 cm , what are the force components F (perpendicular to the handles) corresponding to that 40 N?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free