Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: ForcesF1,F2andF3 act on the structure of Fig. 12-33, shown in an overhead view. We wish to put the structure in equilibrium by applying a fourth force, at a point such as P. The fourth force has vector componentsFhandFv . We are given that a = 2.0 m,b = 3.0m , c = 1 0 m , F1=20N,F2=10NandF3=5.0NFind (a) Fh , (b) Fv, and (c) d.

Short Answer

Expert verified

Answer

a.Fh=5.0Nb.Fv=30Nc.d=1.3m

Step by step solution

01

Understanding the given information  

a=2.0mb=3.0mc=1.0mF1=20NF2=10NF3=5.0N

02

Concept and formula used in the given question

By applying the equations of static equilibrium, you can get the equations in terms of unknown forces. By solving these equations, you can find the values of unknown forces and distance. The equations used are given below.

Static Equilibrium conditions:

Fx=0Fy=0τ=0

03

(a) Calculation for the Fh

Using the given figure in the problem and applying static equilibrium conditions:
Fx=0Fh-F3=0······(1)Fy=0Fv-F1-F2=0······(2)=0Fv×d-F2×b-F3×a=0······(3)

From equation (1):

Fh-5=0

Hence, Fh-5=0

04

(b) Calculation for the  Fv

From equation (2):

Fv-20-10=0

Hence, Fv=30N

05

(c) Calculation for the  d

From equation (3):

30×d-10×3-5×2=0d=1.3m

Hence, d = 1.3 m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 12-47, a nonuniform bar is suspended at rest in a horizontal position by two massless cords. One cord makes the angleθ=36.9°with the vertical; the other makes the angleϕ=53.1°with the vertical. If the lengthLof the bar is6.10m, compute the distancexfrom the left end of the bar to its center of mass.

A uniform cube of side length 8.0 cm rests on a horizontal floor.The coefficient of static friction between cube and floor is m. A horizontal pull Pis applied perpendicular to one of the vertical faces of the cube, at a distance 7.0 cmabove the floor on the vertical midline of the cube face. The magnitude of Pis gradually increased. During that increase, for what values ofμ will the cube eventually (a) begin to slide and (b) begin to tip? (Hint:At the onset of tipping, where is the normal force located?)

A pan balance is made up of a rigid, massless rod with a hanging pan attached at each end. The rod is supported at and free to rotate about a point not at its center. It is balanced by unequal masses placed in the two pans. When an unknown mass mis placed in the left pan, it is balanced by a mass m1 placed in the right pan; when the mass mis placed in the right pan, it is balanced by a mass m2in the left pan. Show thatm=m1m2

Three piñatas hang from the (stationary) assembly of massless pulleys and cords seen in Fig. 12-21. One long cord runs from the ceiling at the right to the lower pulley at the left, looping halfway around all the pulleys. Several shorter cords suspend pulleys from the ceiling or piñatas from the pulleys. The weights (in newtons) of two piñatas are given.

(a) What is the weight of the third piñata? (Hint:A cord that loops halfway around a pulley pulls on the pulley with a net force that is twice the tension in the cord.)

(b) What is the tension in the short cord labeled with T?

A cylindrical aluminum rod, with an initial length of 0.8000 m and radius1000.0 μm , is clamped in place at one end and then stretched by a machine pulling parallel to its length at its other end. Assuming that the rod’s density (mass per unit volume) does not change, find the force magnitude that is required of the machine to decrease the radius to999.9 μm . (The yield strength is not exceeded.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free