Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electric motor of a heat pump transfers energy as heat from the outdoors, which is at -5.0°C, to a room that is at17°C. If the heat pump were a Carnot heat pump (a Carnot engine working in reverse), how much energy would be transferred as heat to the room for each joule of electric energy consumed?

Short Answer

Expert verified

The amount of energy that would be transferred as heat to the room for each joule of electric energy consumed is 13.2 J

Step by step solution

01

The given data

Temperatures,TL=5.0°C=268.15Kand

TH=17°C=290.15K

02

Understanding the concept of the Carnot engine

We use the concept of conservation of energy. The ratio of heat taken from outside to the corresponding temperature is equal to the ratio of the heat absorbed by the room to the corresponding room temperature. We use this relation to find the amount of energy.

Formula:

The formula for the coefficient of performance of a Carnot Engine,

K=QLQH-QLK=TLTH-TL (1)

The work done per cycle of a Carnot Engine,

Win=QH-QL (2)

03

Calculation of the amount of energy to be transferred

From equation (1), we can get the relation of heat transfer and temperature as given:

QHTH=QLTL

Now, using equation (2) in the above equation, we can get the relation as follows:

QHTH=QH-WTLQHTH=QHTL=-WTLQHTH=QHTL=WTLQH=1TL-1TH=WTL

QH=WTL1TL-1TH=1TL1TL-1TH=W1-TLTH=1.0J1-268.15K290-15K=13.2J

Therefore, the amount of energy that would be transferred as heat to the room for each joule of electric energy consumed is 13.2J

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 364 gblock is put in contact with a thermal reservoir. The block is initially at a lower temperature than the reservoir. Assume that the consequent transfer of energy as heat from the reservoir to the block is reversible. Figure gives the change in entropy S of the block until thermal equilibrium is reached. The scale of the horizontal axis is set byTa=280KandTb=380K. What is the specific heat of the block?

As a sample of nitrogen gas (N2) undergoes a temperature increase at constant volume, the distribution of molecular speeds increases. That is, the probability distribution function P(v)for the molecules spreads to higher speed values, as suggested in Fig. 19-8b. One way to report the spread in P(v)is to measure the differencev between the most probable speedvpand the rms speedvrms. When P(v) spreads to higher speeds,v increases. Assume that the gas is ideal and the N2 molecules rotate but do not oscillate. For 1.5 mol, an initial temperature of 250 K, and a final temperature of 500 K, what are (a) the initial differencevi, (b) the final difference,vf, and (c) the entropy changeS for the gas?

A box contains gas molecules. Consider the box to be divided into three equal parts. (a) By extension of Eq. 20-20, write a formula for the multiplicity of any given configuration. (b) Consider two configurations: configuration Awith equal numbers of molecules in all three thirds of the box, and configuration B with equal numbers of molecules in each half of the box divided into two equal parts rather than three. What is the ratio WA/WB of the multiplicity of configuration A to that of configuration B ? (c) EvaluateWA/WBfor N = 100. (Because is not evenly divisible by 3, put 34 molecules into one of the three box parts of configuration Aand 33 in each of the other two parts.)

A three-step cycle is undergone by 3.4mol of an ideal diatomic gas: (1) the temperature of the gas is increased from 200 K to 500 Kat constant volume; (2) the gas is then isothermally expanded to its original pressure; (3) the gas is then contracted at constant pressure back to its original volume. Throughout the cycle, the molecules rotate but do not oscillate. What is the efficiency of the cycle?

A Carnot refrigerator extracts 35.0 kJ as heat during each cycle, operating with a coefficient of performance of 4.60 . What are (a) the energy per cycle transferred as heat to the room and (b) the work done per cycle?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free