Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At what rate must U235nuclei undergo fission by neutron bombardment to generate energy at the rate of 1.00 W? Assume that Q=200 MeV.

Short Answer

Expert verified

The rate at which nuclei undergo fission by neutron bombardment. 3.12×1010s-1.

Step by step solution

01

Given data

The generated energy, P =1 W

The released energy, Q =200 MeV

02

Determine the formulas to calculate the rate at which nuclei undergo fission by neutron bombardment.

The expression to calculate the fission ratio is given as follows.

R=PQ ...(i)

03

Calculate the rate at which nuclei undergo fission by neutron bombardment.

Calculate the fission ratio.

Substitute 1W forP and 200 MeV for into equation (i).

R=1W200MeVR=1W200×106eVR=1W200×106×1.6×1019JR=13.2×1011

Solve further as,

R=10113.2R=10×10103.2R=3.12×1010s-1

Hence the rate at which nuclei undergo fission by neutron bombardment 3.12×1010s-1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:(a) A neutron of mass mnand kinetic energy K makes a head-on elastic collision with a stationary atom of mass . Show that the fractional kinetic energy loss of the neutron is given by KK=4mnm(m+mn)2.

Find role="math" localid="1661942719139" KKfor each of the following acting as the stationary atom:

(b) hydrogen,

(c) deuterium,

(d) carbon, and

(e) lead.

(f) If K=1.00MeV initially, how many such head-on collisions would it take to reduce the neutron’s kinetic energy to a thermal value (0.25 eV) if the stationary atoms it collides with are deuterium, a commonly used moderator? (In actual moderators, most collisions are not head-on.)

During the Cold War, the Premier of the Soviet Union threatened the United States with 2.0 megaton Pu239warheads. (Each would have yielded the equivalent of an explosion of 2.0 megatons of TNT, where 1 megaton of TNT releases 2.6×1028MeVof energy.) If the plutonium that actually fissioned had been 8.00% of the total mass of the plutonium in such a warhead, what was that total mass?

In certain stars the carbon cycle is more effective than the proton–proton cycle in generating energy.This carbon cycle is

C12+H113N+γ,Q1=1.95MeV,N1313C+e++v,Q2=1.19,C13+H114N+γ,Q3=7.55,C14+H115O+γ,Q4=7.30,15O15N+e++v,Q5=1.73,C15+H112C+4He,Q6=4.97

(a) Show that this cycle is exactly equivalent in its overall effects to the proton–proton cycle of Fig. 43-11. (b) Verify that the two cycles, as expected, have the same Q value.

A thermal neutron (with approximately zero kinetic energy) is absorbed by a238Unucleus. How much energy is transferred from mass-energy to the resulting oscillation of the nucleus? Here are some atomic masses and neutron mass.

U237237.048723uU237238.050782uU237239.054287uU237240.056585un1.008664u

Question: A 66 kiloton atomic bomb is fueled with pure U235(Fig. 43-14), 4.0%of which actually undergoes fission. (a) What is the mass of the uranium in the bomb? (It is not 66 kilotons—that is the amount of released energy specified in terms of the mass of TNT required to produce the same amount of energy.) (b) How many primary fission fragments are produced? (c) How many fission neutrons generated are released to the environment? (On average, each fission produces 2.5 neutrons.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free