Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A laser beam of intensity I reflects from a flat, totally reflecting surface of area A, with a normal at angle θwith the beam.Write an expression for the beam’s radiationpressurepr(θ)onthe surface in terms of the beam’s pressurewhenθ=00.

Short Answer

Expert verified

Expression for the beam’s radiation pressure,pr(θ) , in terms of the beam’s pressure pr whenθ=00, is .pr(θ)=pr(cos2θ)

Step by step solution

01

Given data

  • Intensity of laser beam isI.
  • Reflecting surface area is.A
  • The angle between beam and incident beam is.θ
02

Understanding the concept of radiation pressure

By using the concept of the radiation pressure and the ray diagram for the reflection we can find the required expression.

Formulae:

Radiation pressure for the total reflection with the normal incident ray,

pr=FNA=2INC(1)

The trigonometric formula of cosine angle,cosθ=adjacentsideHypotenuse(2)

03

Calculation of the radiation pressure of the beam

When the incident ray makes an angle with the surface, then the situation will be as shown.

InΔABO, the angle ofΔABOis given using equation (2) as follows:

cosθ=FNFIFN=FIcosθ(3)

In,ΔBCOthe angle of ΔBCOis given using equation (2) as follows:

cosθ=INIIN=Icosθ(4)

Using equations (3) and (4) in equation (1), we can get that

Hence, the expression of radiation of pressure is.pr(θ)=pr(cos2θ)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The magnetic component of a polarized wave of light is given by.Bx=(4μT)sin[ky+(2×1015s-1)t (a) In which direction does the wave travel, (b) parallel to which axis is it polarized, and (c) what is its intensity? (d) Write an expression for the electric field of the wave, including a value for the angular wave number. (e) What is the wavelength? (f) In which region of the electromagnetic spectrum is this electromagnetic wave?

In Fig. 33-78, where n1=1.70, n2=1.50,andn3=1.30,light refracts from material 1 into material 2. If it is incident at point A at the critical angle for the interface between materials 2 and 3, what are (a) the angle of refraction at pointBand (b) the initialangleθ?If, instead, light is incident atBat the critical angle for the interface between materials 2 and 3, what are (c) the angle of refraction at pointAand (d) the initial angleθ? If, instead of all that, light is incident at point Aat Brewster’s angle for the interface between materials 2 and 3, what are (e) the angle of refraction at point B and (f) the initialangleθ?

In Fig. 33-73, a long, straight copper wire (diameter2.50 mm and resistance1.00 Ωper300 m ) carries a uniform current of 25 Ain the positive x direction. For point P on the wire’s surface, calculate the magnitudes of (a) the electricfield,E(b) the magnetic field , Band (c) the Poynting vector S, and (d) determine the direction of S.

In Fig. 33-42, unpolarized light is sent into a system of three polarizing sheets. The anglesθ1,θ2andθ3of the polarizing directions are measured counterclockwise from the positive direction of the yaxis (they are not drawn to scale). Anglesθ1and θ3are fixed, but angle θ2can be varied. Figure 33-43 gives the intensity of the light emerging from sheet 3 as a function of θ2. (The scale of the intensity axis is not indicated.) What percentage of the light’s initial intensity is transmitted by the system when θ2=30°?

Rainbow Figure 33-67 shows a light ray entering and then leaving a falling, spherical raindrop after one internal reflection (see Fig. 33-21a). The final direction of travel is deviated (turned) from the initial direction of travel by angular deviation
θdev. (a) Show that localid="1664200532112" θdev is localid="1664200226807" θdev=180°+2θi-4θr , where localid="1664200612169" θiis the angle of incidence of the ray on the drop and localid="1664200615282" θris the angle of refraction of the ray within the drop. (b) Using Snell’s law, substitute for localid="1664200618431" θrin terms of localid="1664200621396" θiand the index of refraction n of the water. Then, on a graphing calculator or with a computer graphing package, graph localid="1664200624361" θdevversus localid="1664200627334" θifor the range of possible localid="1664200636137" θivalues and for localid="1664200630531" n=1.333for red light (at one end of the visible spectrum) and localid="1664200633245" n=1.331for blue light (at the other end). The red-light curve and the blue-light curve have a different minimum, which means that there is a different angle of minimum deviation for each color. The light of any given color that leaves the drop at that color’s angle of minimum deviation is especially bright because rays bunch up at that angle. Thus, the bright red light leaves the drop at one angle and the bright blue light leaves it at another angle minimum deviation from the localid="1664200639414" θdevcurve for (c) red light and (d) blue light. (e) If these colors form the inner and outer edges of a rainbow (Fig. 33-21a), what is the angular width of the rainbow?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free