Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A certain helium–neon laser emits red light in a narrow band of wavelengths centered at632.8nm and with a “wavelength width” (such as on the scale of Fig. 33-1) of0.0100nm. What is the corresponding “frequency width” for the emission?

Short Answer

Expert verified

The frequency width of the emission is7.49×109Hz

Step by step solution

01

Step 1: Listing the given quantities

Wavelength, λ=623.8nm=623.8×10-9m.

Wavelength width,Δλ=0.0100nm=0.0100×10-9m.

Speed of light, c=3×108m/s.

02

Step 2: Understanding the concepts of frequency and wavelength

In wavelength scale Fig. 33-1, each scale marker represents a change in wavelength and corresponding frequency. A certain scale denotes the electromagnetic spectrum. In this problem, we will calculate the frequency width of the He-Ne laser required for the emission using the formula for the change in frequency in terms of velocity of light and wavelength.

Formula:

Δf=Δcλ

03

Step 3: Calculations of the frequency width of the emission

Since Δλλ, we will find Δfas,

Δf=Δcλ=cΔλλ2

Substitute the values in the above expression, and we get,

Δf=3×108623.8×10-9(0.0100×10-9)2=7.49×109Hz

The frequency width of the emission is7.49×109Hz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A plane electromagnetic wave traveling in the positive direction of anxaxis in vacuum has componentsEx=Ey=0andEz=(2.0V/m)cos[π×1015s-1t-x/c]. (a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of thezaxis at a certain pointP, what is the direction of the magnetic field component there?

A beam of intensity Ireflects from a long, totally reflecting cylinder of radius R; the beam is perpendicular to the central axis of the cylinder and has a diameter largerthan2R. What is the beam’s force per unit length on the cylinder?

Someone plans to float a small, totally absorbing sphere 0.500m above an isotropic point source of light so that the upward radiation force from the light matches the downward gravitational force on the sphere. The sphere’s density is 19.0 g/cm3, and its radius is 2.00mm. (a) What power would be required of the light source? (b) Even if such a source were made, why would the support of the sphere be unstable?

A thin, totally absorbing sheet of mass m, face area A, and specificheatcs isfully illuminated by a perpendicular beam of a plane electromagnetic wave. The magnitude of the maximum electric field of the wave isEm.What is the ratedTdtat which the sheet’s temperature increases due to the absorption of the wave?

In Fig.33-52a, a beam of light in material1is incident on a boundary at an angle ofθ1=30°. The extent of refraction of the light into material2depends, in part, on the index of refractionn2of material 2. Fig.33-52bgives the angle of refractionθ2versusn2for a range of possiblen2values. The vertical axis scale is set byθ2a=20.0°andθ2b=40.0°

(a) What is the index of refraction of material 1?

(b) If the incident angle is changed to60°and material 2has n2=2.4, then what is angle θ2?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free