Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Each part of Fig. 33-34 shows light that refracts through an interface between two materials. The incident ray (shown gray in the figure) consists of red and blue light. The approximate index of refraction for visible light is indicated for each material. Which of the three parts show physically possible refraction? (Hint: First consider the refraction in general, regardless of the color, and then consider how red and blue light refract differently?

Short Answer

Expert verified

None of the parts shows physically possible refraction.

Step by step solution

01

The given data

Figure 33-34 consists of three cases that show refraction through an interface between two materials.

02

Understanding the concept of bending due to refraction

Analyzing the given figure and using the concept of refraction, we can predict the part that shows physically possible refraction. For a material with a higher refractive index, the light bends towards the normal line, while for a material with a low refractive index, it speeds up and bends away from the normal line.

03

Calculation to get the possible case of refraction

Let’s draw the normal to the surfaces.

When light travels from a rarer to a denser medium, it refracts towards the normal, and when it travels from a denser to a rarer medium, it refracts away from the normal.

In part (a), light travels from a rarer to a denser medium, and red light is refracted away from the normal.

So, this part is not physically possible.

In part (b), incident and refracted lines are on the same side of the normal.

So, this part is not physically possible.

In part (c), light travels from a denser to a rarer medium. Blue light must bend more than red as the refractive index of blue light is more than that of red light.

So, this part is not physically possible.

Hence, none of the above-given cases is physically possible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

1 A helium–neon laser,radiating at, 632.8nmhas a power output of 3.0mW. The beam diverges (spreads) at angleθ=0.17mrad(Fig. 33-72). (a) What is the intensity of the beamfrom the laser? (b) What is the power of a point source providing that intensity at that distance?

Rainbow Figure 33-67 shows a light ray entering and then leaving a falling, spherical raindrop after one internal reflection (see Fig. 33-21a). The final direction of travel is deviated (turned) from the initial direction of travel by angular deviation
θdev. (a) Show that localid="1664200532112" θdev is localid="1664200226807" θdev=180°+2θi-4θr , where localid="1664200612169" θiis the angle of incidence of the ray on the drop and localid="1664200615282" θris the angle of refraction of the ray within the drop. (b) Using Snell’s law, substitute for localid="1664200618431" θrin terms of localid="1664200621396" θiand the index of refraction n of the water. Then, on a graphing calculator or with a computer graphing package, graph localid="1664200624361" θdevversus localid="1664200627334" θifor the range of possible localid="1664200636137" θivalues and for localid="1664200630531" n=1.333for red light (at one end of the visible spectrum) and localid="1664200633245" n=1.331for blue light (at the other end). The red-light curve and the blue-light curve have a different minimum, which means that there is a different angle of minimum deviation for each color. The light of any given color that leaves the drop at that color’s angle of minimum deviation is especially bright because rays bunch up at that angle. Thus, the bright red light leaves the drop at one angle and the bright blue light leaves it at another angle minimum deviation from the localid="1664200639414" θdevcurve for (c) red light and (d) blue light. (e) If these colors form the inner and outer edges of a rainbow (Fig. 33-21a), what is the angular width of the rainbow?

The magnetic component of a polarized wave of light is given by.Bx=(4μT)sin[ky+(2×1015s-1)t (a) In which direction does the wave travel, (b) parallel to which axis is it polarized, and (c) what is its intensity? (d) Write an expression for the electric field of the wave, including a value for the angular wave number. (e) What is the wavelength? (f) In which region of the electromagnetic spectrum is this electromagnetic wave?

At a beach, the light is generally partially polarized due to reflections off sand and water. At a particular beach on a particular day near sundown, the horizontal component of the electric field vector is 2.3times the vertical component. A standing sunbather puts on polarizing sunglasses; the glasses eliminate the horizontal field component.

(a) What fraction of the light intensity received before the glasses were put on now reaches the sunbather’s eyes?

(b) The sunbather, still wearing the glasses, lies on his side. What fraction of the light intensity received before the glasses were put on now reaches his eyes?

Some neodymium–glass lasers can provide100TWof power in1.0nspulses at a wavelength of0.26μm. How much energy is contained in a single pulse?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free