Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 24-68 shows a hemisphere with a charge of 4.00μC distributed uniformly through its volume. The hemisphere lies on an xy plane the way half a grapefruit might lie face down on a kitchen table. Point P is located on the plane, along a radial line from the hemisphere’s center of curvature, at radial distance15cm .What is the electric potential at point P due to the hemisphere?

Short Answer

Expert verified

The electric potential at point P isV=0.24MV

Step by step solution

01

Step 1: Given data:

The charge on the hemisphere,q=4.0μC=4.0×106C.

The radius of the curvature, R=15cm=0.15m.

02

Determining the concept:

The electric potential at point P will be the same as on its surface because the charges are uniformly distributed.

Formula:

The potential is define by,

V=14πεoqR=kqR

Here, ε0 is the permittivity of free space, q is the electron charge, and R is the distance, and k is the Coulomb’s constant having a value 9×109Nm2/C2.

03

Determining the electric potential:

Write the equation for the potential as below.

V=kqR

Substitute known values in the above equation.

V=(9×109Nm2/C2)×4.0×106C0.15m=2.4×105V=0.24MV

Hence, the electric potential is 0.24MV.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Particle 1 (with a charge of +5.0μC) and particle 2 (with a charge of+3.0μC) are fixed in place with separationd=4.0cmon the xaxis shown in Fig. 24-58a. Particle 3 can be moved along the xaxis to the right of particle 2. Figure 24-58bgives the electric potential energy Uof the three-particle system as a function of the xcoordinate of particle 3. The scale of the vertical axis is set byUS=5.0J.

What is the charge of particle 3?

Question: The ammonia molecule NH3 has a permanent electric dipole moment equal to,1.47 D where,1Debye=3.34×10-30C.m. Calculate the electric potential due to an ammonia molecule at a point 52.0nmaway along the axis of the dipole. (Set v = 0at infinity.)

Figure 24-47 shows a thin plastic rod of length L = 13.5cmand uniform charge 43.6 fC. (a) In terms of distance d, find an expression for the electric potential at point P1. (b) Next, substitute variable xfor dand find an expression for the magnitude of the component Exof the electric field at. (c) What is the direction of Exrelative to the positive direction of the xaxis? (d) What is the value of Exat P1 for x = d = 6.20cm? (e) From the symmetry in Fig. 24-47, determine Eyat P1.

Question: In Fig. 24-48, what is the net electric potential at the origin due to the circular arc of charge Q1=+7.21pCand the two particles of chargesQ2=4.00Q1andQ3=-2.00Q1? The arc’s center of curvature is at the origin and its radius R is 2. 00 m; the angle indicated isθ=20.0°.

In Fig. 24-72, two particles of charges q1and q2are fixed to an x-axis. If a third particle, of charge+6.0μC, is brought from an infinite distance to point P, the three-particle system has the same electric potential energy as the original two-particle system. What is the charge ratioq1/q2?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free