Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) If an isolated conducting sphere10cmin radius has a net charge of4.0μCand ifV=0at infinity, what is the potential on the surface of the sphere? (b) Can this situation actually occur, given that the air around the sphere undergoes electrical breakdown when the field exceeds3.0MV/m?

Short Answer

Expert verified

a) The potential on the surface of the sphere is, 3.6×105V.

b) The situation is not possible

Step by step solution

01

Step 1: Identification of the given data

For the isolated conducting sphere

Its radius r=10cmand its charge q=4.0μC, V=0at infinity.

02

Understanding the concept

Electric Potential is given by,V=14πεo·qr

03

(a) Calculate the potential on the surface of the sphere

The electric potential is expressed as,

V=14πεo·qr

Substitute all the value in the above equation.

V=9.0×109N.m2/C2×4.0×10-6C0.10mV=3.6×105V

Hence the potential on the surface of the sphere is, 3.6×105V.

04

(b) Find out if this situation canactually occur, given that the air around the sphere undergoes electrical breakdown when the field exceeds 3.0MV/m

The field just outside the sphere is expressed as,

E=14πεo·qr2E=Vr

Substitute all the value in the above equation.

E=3.6×105V0.10m=3.6×106V/m

Hence the value is exceeds3.0MV/m, so this situation cannot occur.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two charges q=+2.0μC are fixed a distance d=2.0cmapart (Fig. 24-69).

(a) With V=0at infinity, what is the electric potential at point C?

(b) You bring a third chargeq=+2.0μC from infinity to C. How much work must you do?

(c) What is the potential energy U of the three-charge configuration when the third charge is in place?

In Fig. 24-60, a charged particle (either an electron or a proton) is moving rightward between two parallel charged plates separated by distance d=2.0 mm. The plate potentials are V1= -70.0 Vand V2= -50.0V. The particle is slowing from an initial speed of 90.0 km/sat the left plate. (a) Is the particle an electron or a proton? (b) What is its speed just as it reaches plate 2?

Two tiny metal spheres Aand B,massmA=5.00gandmB=10.00g, have equal positive chargeq=5.00μC. The spheres are connected by a mass less non-conducting string of length d=1.00 m, which is much greater than the radii of the spheres. (a) What is the electric potential energy of the system? (b) Suppose you cut the string. At that instant, what is the acceleration of each sphere? (c) A long time after you cut the string, what is the speed of each sphere?

In Fig. 24-33, a particle is to be released at rest at point A and then is to be accelerated directly through point B by an electric field. The potential difference between points A and B is 100v . Which point should be at higher electric potential if the particle is (a) an electron, (b) a proton, and (c) an alpha particle (a nucleus of two protons and two neutrons)? (d) Rank the kinetic energies of the particles at point B, greatest first.

A plastic rod has been bent into a circle of radius R = 8.20 cm. It has a charge Q1 = +4.20pCuniformly distributed along one-quarter of its circumference and a charge Q2 = -6Q1uniformly distributed along the rest of the circumference (Fig. 24-44). With V = 0at infinity, what is the electric potential at (a) the center Cof the circle and (b) point P, on the central axis of the circle at distance D = 6.71cmfrom the center?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free