Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Fig. 24-48, what is the net electric potential at the origin due to the circular arc of charge Q1=+7.21pCand the two particles of chargesQ2=4.00Q1andQ3=-2.00Q1? The arc’s center of curvature is at the origin and its radius R is 2. 00 m; the angle indicated isθ=20.0°.

Short Answer

Expert verified

Answer:

The net electric potential at the origin sue to the charges is 32.4 mV.

Step by step solution

01

The given data

  1. Values of the charges,Q1=+7.21pC,Q2=+4Q1andQ3=-2Q1
  2. Radius of the circular arc, R = 2m
  3. Angle indicated in the given figure,θ=200
02

Understanding the concept of the electric potential

Using the concept of the electric potential, we can get the net electric potential at the point due to charges can be calculated by adding all the potentials due to the individual charges.

Formula:

The net electric potential at the point due to a charge, V=14πε0QR (i)

03

Calculation of the net electric potential

The net potential at the origin due to the charges is given using equation (i) as follows:

Vnet=V1+V2+V3=14πε0Q1R+14πε0Q22R+14πε0Q3R=14πε0×Q1R1+42-2=9.0×109×7.21×10-122.0=32.44×10-3V=32.4mV

Hence, the value of the electric potential is 32.4 mV.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: A charge of -9.0 nCis uniformly distributed around a thin plastic ring lying in a y-zplane with the ring center at the origin. A-6.0 pC particle is located on the xaxis at x = 3.0 m. For a ring radius of, how much work must an external force do on the particle to move it to the origin?

(a) If an isolated conducting sphere10cmin radius has a net charge of4.0μCand ifV=0at infinity, what is the potential on the surface of the sphere? (b) Can this situation actually occur, given that the air around the sphere undergoes electrical breakdown when the field exceeds3.0MV/m?

An electric field of approximately 100 V/mis often observed near the surface of Earth. If this were the field over the entire surface, what would be the electric potential of a point on the surface? (SetV=0 at infinity.)

Question: In Fig. 24-53, seven charged particles are fixed in place to form a square with an edge length of 4.0 cm. How much work must we do to bring a particle of charge +6Einitially at rest from an infinite distance to the center of the square?

Two tiny metal spheres Aand B,massmA=5.00gandmB=10.00g, have equal positive chargeq=5.00μC. The spheres are connected by a mass less non-conducting string of length d=1.00 m, which is much greater than the radii of the spheres. (a) What is the electric potential energy of the system? (b) Suppose you cut the string. At that instant, what is the acceleration of each sphere? (c) A long time after you cut the string, what is the speed of each sphere?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free