Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The ammonia molecule NH3 has a permanent electric dipole moment equal to,1.47 D where,1Debye=3.34×10-30C.m. Calculate the electric potential due to an ammonia molecule at a point 52.0nmaway along the axis of the dipole. (Set v = 0at infinity.)

Short Answer

Expert verified

Answer:

The electric potential due to an ammonia molecule is163μV.

Step by step solution

01

The given data

  1. The dipole moment of the ammonia molecule, p = 1.47D where1D=3.34×10-30C.m
  2. The distance of the ammonia molecule, r = 52nm
  3. The electric potential at infinity is V = 0.
02

Understanding the concept of the electric potential

Using the given concept of the electric potential, we can get the value of the potential using the dipole moment of the given ammonia molecule.

Formula:

The electric potential of a body due to the dipole, V=14πε0pr2 (i)

03

Calculation of the electric potential

Now the electric potential at the distance is given using the given data in equation (i) as follows:

V=8.99×1091.47×3.34×10-30(52.0×10-9)2=16.3μV

Hence, the value of the potential is 16.3μV.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When an electron moves from A to B along an electric field line in Fig. 24-34, the electric field does 3.94 x 10-19 Jof work on it. What are the electric potential differences (a) VB - VA, (b) VC - VA, and (c) VC - VB?

Two metal spheres, each of radius 3.0 cm, have a center-to-center separation of 2.0 m. Sphere 1 has charge +1.0×10-8C; sphere 2 has charge-3.0×10-8C. Assume that the separation is large enough for us to say that the charge on each sphere is uniformly distributed (the spheres do not affect each other). Withdata-custom-editor="chemistry" V=0at infinity, calculate (a) the potential at the point halfway between the centers and the potential on the surface of (b) sphere 1 and (c) sphere 2.

Figure 24-47 shows a thin plastic rod of length L = 13.5cmand uniform charge 43.6 fC. (a) In terms of distance d, find an expression for the electric potential at point P1. (b) Next, substitute variable xfor dand find an expression for the magnitude of the component Exof the electric field at. (c) What is the direction of Exrelative to the positive direction of the xaxis? (d) What is the value of Exat P1 for x = d = 6.20cm? (e) From the symmetry in Fig. 24-47, determine Eyat P1.

Question: An electron is placed in an x-yplane where the electric potential depends on xand yas shown, for the coordinate axes, in Fig. 24-51 (the potential does not depend on z). The scale of the vertical axis is set by Vs=500 V. In unit-vector notation, what is the electric force on the electron?

Question: The electric potential at points in an x-yplane is given byv=(2.0V/m2)x2-(3.0V/m2)y2. In unit-vector notation, what is the electric field at the point (role="math" localid="1662092062999" 3.0m,2.0m)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free