Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 22-36, the four particles are fixed in place and have charges,q1=q2=+5e,q3=+3eandq4=-12e. Distance, d = 5.0 mm. What is the magnitude of the net electric field at point Pdue to the particles?

Short Answer

Expert verified

The magnitude of the net electric field at point P due to the particle is 0.

Step by step solution

01

The given data

  1. The charges of the four particles,q1=q2=+5e,q3=+3eandq4=-12e
  2. The distance,d=5mm1m1000mm=0.005m
02

Understanding the concept of electric field 

Using the concept of the electric field at a given point, we can get the value of an individual electric field by a charge. Again using the superposition law, we can get the value of the electric field in its direction and this determines the net electric field at that point.

Formulae:

The magnitude of the electric field,E=q4πε0R2R^ (1)

where R = The distance of field point from the charge, and q = charge of the particle

According to the superposition principle, the electric field at a point due to more than one charge,

E=Eii=1n=i=1nqi4πε0ri2r^i

03

Calculation of the net electric field

The origin of the coordinate system is placed at point P and the y-axis is oriented in the direction of the charge, q4=-12e(passing through the charge, q3=+3e). The x-axis is perpendicular to the y axis, and thus passes through the identical charges,

q1=q2=+5e

The individual magnitudes of the electric field due to the charges are figured by using the absolute signs of the charges. Now, considering the point charge being positive ( q > 0), we can see that the contributions coming from them cancel each other. Hence, the net electric field in the direction of the y-axis is given using equations (1) and (2) as follows:

Enet=14πε0q4(2d)2-q3(d)2j^=14πε012q4d2-3qd2j^=0

Hence, the value of the net electric field is 0. The rough sketch of the field lines is given below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 22-27, two identical circular non-conducting rings are centered on the same line with their planes perpendicular to the line. Each ring has charge that is uniformly distributed along its circumference. The rings each produce electric fields at points along the line. For three situations, the charges on rings Aand Bare, respectively, (1)q0andq0, (2)-q0and-q0, and (3)-q0and.q0Rank the situations according to the magnitude of the net electric field at (a) pointP1midway between the rings, (b) pointP2at the center of ring B, and (c) pointP3to the right of ring B, greatest first.

Figure 22-49 shows three circular arcs centered on the origin of a coordinate system. On each arc, the uniformly distributed charge is given in terms ofQ=2.00μC. The radii are given in terms oflocalid="1657282380507" R=10.0cm. What are the (a) magnitude and (b) direction (relative to the positive xdirection) of the net electric field at the origin due to the arcs?

In Fig. 22-41, particle 1 of charge q1 = -5.00q and particle 2 of charge q2=+2.00qare fixed to an xaxis. (a) As a multiple of distance L, at what coordinate on the axis is the net electric field of the particles zero? (b)Sketch the net electric field lines between and around the particles.

Question: In Fig. 22-59, an electron (e) is to be released from rest on the central axisof a uniformly charged disk of radiusR. The surface charge density on the disk is+4.00mC/m2. What is the magnitude of the electron’s initial acceleration if it is released at a distance (a)R, (b) R/100, and (c) R /1000from the center of the disk? (d) Why does the acceleration magnitude increase only slightly as the release point is moved closer to the disk?


Suppose you design an apparatus in which a uniformly charged disk of radius Ris to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point P, at distance2.00Rfrom the disk (Fig. 22-57a). Cost analysis suggests that you switch to a ring of the same outer radius Rbut with inner radius R/2.00(Fig. 22-57b). Assume that the ring will have the same surface charge density as the original disk. If you switch to the ring, by what percentage will you decrease the electric field magnitude at P?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free