Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the electric dipole moment of an electron and a proton 4.30nmapart.

Short Answer

Expert verified

The electric dipole moment of an electron and a proton4.30 nm is6.88×1028Cm

Step by step solution

01

The given data 

An electron and a proton ared=4.30 nm apart.

02

Understanding the concept of electric dipole moment 

Using the concept of the electric dipole moment, the value of the dipole moment for an electron and a proton can be calculated. Again, the direction of the dipole directs from a negative charge to a positive charge.

Formula:

The magnitude of the dipole moment is given by, p=qd (i)

where, q is the positive charge in the dipole and d is the separation of the charges.

03

Calculation of the electric dipole moment 

For the dipole described in the problem, using the given data in the equation (i), we can get the electric dipole moment as given:

p=(1.60x1019 C)(4.30x109 m)=6.88x1028Cm

The dipole moment is a vector that points from the negative toward the positive charge.

Hence, the value of the dipole moment is 6.88x1028 Cm

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An electric dipole with dipole momentp=(3.00i^+4.00j^)(1.24×1030C.m)is in an electric fieldE=(4000N/C)i^(a) What is the potentialenergy of the electric dipole? (b) What is the torque acting on it?(c) If an external agent turns the dipole until its electric dipole moment isp=(4.00i^+3.00j^)(1.24×1030C.m)how much work is done by the agent?

The nucleus of a plutonium-239atom containsrole="math" localid="1657279163265" 94protons.. Assume that the nucleus is a sphere with radius 6.64fm and with the charge of the protons uniformly spread through the sphere. At the surface of the nucleus, what are the (a) magnitude and (b) direction (radially inward or outward) of the electric field produced by the protons?

A circular plastic disk with radiusR=2.00cmhas a uniformly distributed chargeQ=+(2.00×106)eon one face. A circular ring of widthis centered on that face, with the center of that width at radiusr=0.50cm. In coulombs, what charge is contained within the width of the ring?

In Fig. 22-24, two particles of charge qare arranged symmetrically about the y axis; each produces an electric field at point Pon that axis. (a) Are the magnitudes of the fields at Pequal? (b) Is each electric field directed toward or away from the charge producing it? (c) Is the magnitude of the net electric field at Pequal to the sum of the magnitudes Eof the two field vectors (is it equal to 2E)? (d) Do the x components of those two field vectors add or cancel? (e) Do their y components add or cancel? (f) Is the direction of the net field at P that of the canceling components or the adding components? (g) What is the direction of the net field?

Figure 22-47 shows two parallel non-conducting rings with their central axes along a common line. Ring 1 has uniform charge q1and radius R; ring 2 has uniform charge q2and the same radius R. The rings are separated by distance d=3.00R.The net electric field at point Pon the common line, at distance Rfrom ring 1, is zero. What is the ratio q1/q2?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free