Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 22-25 shows four situations in which four charged particles are evenly spaced to the left and right of a central point. The charge values are indicated. Rank the situations according to the magnitude of the net electric field at the central point, greatest first.

Short Answer

Expert verified

The rank of the situations according to the magnitude of the net electric field at the central point is |E2|>|E4|>|E3|>|E1|.

Step by step solution

01

Understanding the concept of electric field

Considering the concept that the electric field lines move toward the negative charge and lines radially move away from the positive charge, the net electric field can be calculated. If the right direction is said to be positive, the net field at point P can be calculated due to the four arranged charges in the given four situations.

The magnitude of the electric field,

|E|=k|q|r2 (i)

02

Calculation of the rank according to the magnitude of the electric field 

According to the concept and using equation (i), the magnitude of the net electric field at the central point can be given as follows: (considering right direction as positive)

Situation-(1):

E1=ke4d2ked2+ked2ke4d2|E1|=0

Situation-(2):

E2=ke4d2+ked2+ked2+ke4d2|E2|=5ke2d2

Situation-(3):

E3=ke4d2+ked2ked2ke4d2=ke2d2|E3|=ke2d2

Situation-(4):

E4=ke4d2ked2ked2+ke4d2=2ked2|E4|=2ked2

Hence, the rank of the magnitude of the net electric field is|E2|>|E4|>|E3|>|E1| .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 22-34 the electric field lines on the left have twice the separation of those on the right. (a) If the magnitude of the field at Ais40N/C, what is the magnitude of the force on a proton at A? (b) What is the magnitude of the field at B?

When three electric dipoles are near each other, they each experience the electric field of the other two, and the three-dipole system has a certain potential energy. Figure 22-31 shows two arrangements in which three electric dipoles are side by side. Each dipole has the same magnitude of electric dipole moment, and the spacing between adjacent dipoles is identical. In which arrangement is the potential energy of the three-dipole system greater?

In Fig. 22-24, two particles of charge qare arranged symmetrically about the y axis; each produces an electric field at point Pon that axis. (a) Are the magnitudes of the fields at Pequal? (b) Is each electric field directed toward or away from the charge producing it? (c) Is the magnitude of the net electric field at Pequal to the sum of the magnitudes Eof the two field vectors (is it equal to 2E)? (d) Do the x components of those two field vectors add or cancel? (e) Do their y components add or cancel? (f) Is the direction of the net field at P that of the canceling components or the adding components? (g) What is the direction of the net field?

(a) what is the magnitude of an electron’s acceleration in a uniform electric field of magnitude1.40×106N/C? (b) How long would the electron take, starting from rest, to attain one-tenth the speed of light? (c) How far would it travel in that time?

Electric quadruple.Figure 22-46 shows a generic electric quadruple. It consists of two dipoles with dipole moments that are equal in magnitude but opposite in direction. Show that the value of Eon the axis of the quadruple for a point Pa distance zfrom its center (assumezd ) is given by E=14πεo3Qz4in whichis known as the quadruple moment Q(=2qd2)of the charge distribution.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free