Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electric field of an electric dipole along the dipole axis is approximated by equations. 22-8 and 22-9. If a binomial expansion is made of Eq. 22-7, what is the next term in the expression for the dipole’s electric field along the dipole axis, that is, what isEnext in the expressionE=12πεoqdz3+Enext ?

Short Answer

Expert verified

The next term in the expression for the dipole’s electric field along the dipole axis is 14πεoqd3z5

Step by step solution

01

The given data

Expression of electric field due to an electric dipole is given as:

E=12πεoqz3d1d2z22

02

Understanding the concept of electric field

Region in the vicinity of a charge in which if any other charge is placed, it experiences a force, either attractive or repulsive. This region is known as electric field.

The electric field of an electric dipole along the dipole axis,

E=12πεoqdz3 (i)

03

Calculation of the next term in the expression for the electric field of a dipole

The equation 22-7 mentioned in the question, is-

E=12πεoqz3d1-d2z22

Expanding using binomial theorem,

E=12πεoqz3d1-d2z22=14πεoqz211-d2z2-11+d2z2=14πεoqz21+dz+34d2z2+12d3z3+.-1-dz+34d2z2-12d3z3+.=12πεoqz3+14πεoqd3z5+

Therefore, the term required in the problem is 14πεoqd3z5.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

+QIn Fig. 22-30a, a circular plastic rod with uniform charge+Qproduces an electric field of magnitude Eat the center of curvature (at the origin). In Figs. 22-30b, c, and d, more circular rods, each with identical uniform charges, are added until the circle is complete. A fifth arrangement (which would be labeled e) is like that in dexcept the rod in the fourth quadrant has charge-Q
. Rank the five arrangements according to the magnitude of the electric field at the center of curvature, greatest first.

An electron with a speed of 5.00×108cm/s enters an electric field of magnitude1.00×103N/C , traveling along a field line in the direction that retards its motion. (a) How far will the electron travel in the field before stopping momentarily, and (b) how much time will have elapsed? (c) If the region containing the electric field is8.00 mm long (too short for the electron to stop within it), what fraction of the electron’s initial kinetic energy will be lost in that region?

Figure 22-37 shows two charged particles on an x-axis: -q=-3.20×10-19Cat x=-3.00mq=3.20×10-19and at x=+3.00m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x-axis) of the net electric field produced at point Pat y=4.00m?

(a) What total (excess) charge qmust the disk in Fig. 22-15 have for the electric field on the surface of the disk at its center to have magnitude 3.0×106N/C, the Evalue at which air breaks down electrically, producing sparks? Take the disk radius as.2.5cm (b) Suppose each surface atom has an effective cross-sectional area of0.015nm2. How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of these atoms must be so charged?

An electric field,Ewith an average magnitude of about150NCpoints downward in the atmosphere near Earth’s surface.We wish to “float” a sulfur sphere weighing4.4Nin this field by charging the sphere. (a) What charge (both sign and magnitude) must be used? (b) Why is the experiment impractical?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free