Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A single-slit diffraction experiment is set up with light of wavelength 420 nm, incident perpendicularly on a slit of width 5.10 mm. The viewing screen is 3.20 m distant. On the screen, what is the distance between the center of the diffraction pattern and the second diffraction minimum?

Short Answer

Expert verified

The distance between the center of the diffraction pattern and the second diffraction minimum is 0.527 m.

Step by step solution

01

Identification of given data

The given data can be listed below,

  • The wavelength of the light is,λ=420nm
  • The value of slit width is,a=5.10μm
  • The distance of screen from slits is, D=3.20m
02

Concept/Significance of single slit diffraction

Sending a beam of light, electrons, or other particles through a single slit results in single slit diffraction. The beam diffracts widely in all directions behind a single, extremely thin (equivalent to the beam's wavelength) slit and covers the entire downstream viewing screen.

03

Determination of the distance between the center of the diffraction pattern and the second diffraction minimum

The diffraction minima of the single slit experiment is satisfied by,

asinθ=mλ

Here, ais the slit width, is the wavelength of light and m is the order of diffraction.

The angle of diffraction is given by,

sinθ=yD

Here, y is the distance between central and minimum diffraction pattern, and D is the distance of screen and slit.

Substitute all the values in the above,the distance between the center of the diffraction pattern and the second diffraction minimum is calculated as,

ayD=mλy=mλDa=2×420×10-9m3.20m5.10×10-6m=0.527m

Thus, the distance between the center of the diffraction pattern and the second diffraction minimum is 0.527m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A beam of light consisting of wavelengths from460.0nmto640.0nmis directed perpendicularly onto a diffraction grating with 160 lines/mm. (a) What is the lowest order that is overlapped by another order? (b) What is the highest order for which the complete wavelength range of the beam is present? In that highest order, at what angle does the light at wavelength (c)460.0nmand (d) 640.0nmappear? (e) What is the greatest angle at which the light at wavelength460.0nmappears?

Suppose that two points are separated by 2.0 cm. If they are viewed by an eye with a pupil opening of 5.0 mm, what distance from the viewer puts them at the Rayleigh limit of resolution? Assume a light wavelength of 500 nm.

Suppose that the central diffraction envelope of a double-slit diffraction pattern contains 11 bright fringes and the first diffraction minima eliminate (are coincident with) bright fringes. How many bright fringes lie between the first and second minima of the diffraction envelope?

Floaters. The floaters you see when viewing a bright, featureless background are diffraction patterns of defects in the vitreous humor that fills most of your eye. Sighting through a pinhole sharpens the diffraction pattern. If you also view a small circular dot, you can approximate the defect’s size. Assume that the defect diffracts light as a circular aperture does. Adjust the dot’s distance L from your eye (or eye lens) until the dot and the circle of the first minimum in the diffraction pattern appear to have the same size in your view. That is, until they have the same diameter D'on the retina at distance L'=2cmfrom the front of the eye, as suggested in Fig. 36-42a, where the angles on the two sides of the eye lens are equal. Assume that the wavelength of visible light is λ=550nm. If the dot has diameter D=2.0mmand is distance L=45.0cmfrom the eye and the defect is x=6.0mm in front of the retina (Fig. 36-42b), what is the diameter of the defect?

If we make d=a in Fig. 36-50, the two slits coalesce into a single slit of width 2a. Show that Eq. 36-19 reduces to give the diffraction pattern for such a slit.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free