Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Babinet’s principle. A monochromatic bean of parallel light is incident on a “collimating” hole of diameter xλ . Point P lies in the geometrical shadow region on a distant screen (Fig. 36-39a). Two diffracting objects, shown in Fig.36-39b, are placed in turn over the collimating hole. Object A is an opaque circle with a hole in it, and B is the “photographic negative” of A . Using superposition concepts, show that the intensity at P is identical for the two diffracting objects A and B .

Short Answer

Expert verified

Using Superposition concept it can be shown that the intensity at P is identical for two diffracting objects A and B.

Step by step solution

01

Explain Babinet’s Principle

Consider that a monochromatic bean of parallel light is incident on a “collimating” hole of diameter xλ.

Point P lies in the geometrical shadow region on distant screen. Over the collimating hole two different diffracting objects are placed. Object A is an opaque circle with a hole and B is the photographic negative of A .

02

Step 2: Using superposition concepts, show that the intensity at P  is identical for the two diffracting objects A and B:

Consider the Huygen’s principle of diffraction, when object A is in the place where, the huygen’s wavelets passes through the hole reaches the point P . Consider that it produces the electric field EA.

When object B is placed at the point , where the light that was blocked by object A gets to the point P . The Electric field at P is EB.

Thus, the resultant electric field at the condition when neither A nor B is present is,

EA+EB=0

The resultant is zero, since the point P is in geometric shadow.

Hence,

EA=-EB

And the intensity is proportional to the square of the electric field. So

IE2

Here, the intensity at point P is same when A and B are present. Therefore,

IE2

Hence, it has been proved that the intensity at P is identical for two diffracting objects A and B .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In June 1985, a laser beam was sent out from the Air Force Optical Station on Maui, Hawaii, and reflected back from the shuttle Discovery as it sped by 354 km overhead. The diameter of the central maximum of the beam at the shuttle position was said to be 9.1 m, and the beam wavelength was 500 nm. What is the effective diameter of the laser aperture at the Maui ground station? (Hint: A laser beam spreads only because of diffraction; assume a circular exit aperture.)

The radar system of a navy cruiser transmits at a wavelength of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a range of 6.2 km, what is the smallest distance that two speedboats can be from each other and still be resolved as two separate objects by the radar system?

(a) A circular diaphragm 60 cm in diameter oscillates at a frequency of 25 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm. Take the speed of sound in water to be 1450 m/s and find the angle between the normal to the diaphragm and a line from the diaphragm to the first minimum. (b) Is there such a minimum for a source having an (audible) frequency of 1.0 kHz?

In Fig. 36-47, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength0.260nmmakes an angleθ=63.8° with the top face of the crystal. What is the unit cell sizea0?

Light of wavelength 440 nm passes through a double slit, yielding a diffraction pattern whose graph of intensity I versus angular position is shown in Fig. 36-44. Calculate (a) the slit width and (b) the slit separation. (c) Verify the displayed intensities of the m=1and m=2 interference fringes.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free