Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An acoustic double-slit system (of slit separation dand slit width ) is driven by two loudspeakers as shown in Fig. 36-51. By use of a variable delay line, the phase of one of the speakers may be varied relative to the other speaker. Describe in detail what changes occur in the double-slit diffraction pattern at large distances as the phase difference between the speakers is varied from zero to 2π. Take both interference and diffraction effects into account.

Short Answer

Expert verified

The peaks of the sine shift until splits from maximum central to smaller maxima.

Step by step solution

01

Write the given data from the question.

The slit separation isd .

The slit width isa .

02

Determine the changes occur in the double slit diffraction at large distance.

For the phase difference is π, then the reverse of angle,

θR=1.22λd

Here, λis the wavelength andd is the slit separation.

For the phase difference is varied from 0to180° , and180° to360° the peaks of the sine shiftcontinuouslyuntil it spilt the maximum central into smaller maxima and located at the angleθ , which is given by,

.

asinθ=±λ

Hence the peaks of the sine shift until splits from maximum central to smaller maxima.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The telescopes on some commercial surveillance satellites can resolve objects on the ground as small as across (see Google Earth), and the telescopes on military surveillance satellites reportedly can resolve objects as small as 10cm across. Assume first that object resolution is determined entirely by Rayleigh’s criterion and is not degraded by turbulence in the atmosphere. Also assume that the satellites are at a typical altitude of 400nmand that the wavelength of visible light is role="math" localid="1663028559183" 550nm. What would be the required diameter of the telescope aperture for (a) role="math" localid="1663028596951" 85cmresolution and (b) role="math" localid="1663028635287" 10cmresolution? (c) Now, considering that turbulence is certain to degrade resolution and that the aperture diameter of the Hubble Space Telescope is role="math" localid="1663028673584" 2.4m, what can you say about the answer to (b) and about how the military surveillance resolutions are accomplished?

A grating with d = 1.50 mm is illuminated at various angles of incidence by light of wavelength 600 nm. Plot, as a function of the angle of incidence (0 to 90°), the angular deviation of the first order maximum from the incident direction.

Nuclear-pumped x-ray lasers are seen as a possible weapon to destroy ICBM booster rockets at ranges up to 2000 km. One limitation on such a device is the spreading of the beam due to diffraction, with resulting dilution of beam intensity. Consider such a laser operating at a wavelength of 1.40 nm. The element that emits light is the end of a wire with diameter 0.200 mm. (a) Calculate the diameter of the central beam at a target 2000 km away from the beam source. (b) What is the ratio of the beam intensity at the target to that at the end of the wire? (The laser is fired from space, so neglect any atmospheric absorption.)

A single-slit diffraction experiment is set up with light of wavelength 420 nm, incident perpendicularly on a slit of width 5.10 mm. The viewing screen is 3.20 m distant. On the screen, what is the distance between the center of the diffraction pattern and the second diffraction minimum?

(a) How many rulings must a 4.00-cm-wide diffraction grating have to resolve the wavelengths 415.496 and 415.487 nm in the second order? (b) At what angle are the second-order maxima found?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free