Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Light of wavelength 500nm diffracts through a slit of width2μm and onto a screen that is 2maway. On the screen, what is the distance between the center of the diffraction pattern and the third diffraction minimum?

Short Answer

Expert verified

The distance between the center of the diffraction pattern and the third diffraction minimum is1.5mm .

Step by step solution

01

Given data:

The wavelength of incident light λ=500nm:

Slit width: d=2mm

Distance of screen from slit: D=2m

02

Diffraction from a single slit:

The distance of the mth order single slit diffraction minima from thecentral maxima for slit width d and screen distance D is

x=mλDd .....(1)

Here,λ is the wavelength of the incident light.

03

Determining the distance of the third minimal from central maxima

Calculate the distance of the third minima from the central maxima by substituting known values into equation (1).

x=3×500×10-9m×2m2×10-3m=0.0015m=1.5mm

Thus, the required distance is 1.5mm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The wings of tiger beetles (Fig. 36-41) are coloured by interference due to thin cuticle-like layers. In addition, these layers are arranged in patches that are 60μm across and produce different colours. The colour you see is a pointillistic mixture of thin-film interference colours that varies with perspective. Approximately what viewing distance from a wing puts you at the limit of resolving the different coloured patches according to Rayleigh’s criterion? Use 550nm as the wavelength of light and 3.00nm as the diameter of your pupil.

A diffraction grating having is illuminated with a light signal containing only two wavelengths and . The signal in incident perpendicularly on the grating. (a) What is the angular separation between the second order maxima of these two wavelengths? (b) What is the smallest angle at which two of the resulting maxima are superimposed? (c) What is the highest order for which maxima of both wavelengths are present in the diffraction pattern?

Question:If someone looks at a bright outdoor lamp in otherwise dark surroundings, the lamp appears to be surrounded by bright and dark rings (hence halos) that are actually a circular diffraction pattern as in Fig. 36-10, with the central maximum overlapping the direct light from the lamp. The diffraction is produced by structures within the cornea or lens of the eye (hence entoptic). If the lamp is monochromatic at wavelength 550nm and the first dark ring subtends angular diameter 2.5o in the observer’s view, what is the (linear) diameter of the structure producing the diffraction?

If Superman really had x-ray vision at 0.10nm wavelength and a 4.0mm pupil diameter, at what maximum altitude could he distinguish villains from heroes, assuming that he needs to resolve points separated by 5.0cm to do this?

Visible light is incident perpendicularly on a diffraction grating of 200 rulings/mm. What are the (a) longest, (b) second longest, and (c) third longest wavelengths that can be associated with an intensity maximum at θ = 30.0°?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free